Ankit Pensia

E-mail: ankitpensia94@gmail.com Mob : +1 (608)-695-6931

Research	machine learning, robust statistics, differential privacy, high-dimensional statistics, al	gorithmic fairness
Employment	Simons Institute for the Theory of Computing, UC Berkeley Research Fellow, Modern Paradigms in Generalization	Aug'24 - ongoing
	Postdoctoral Fellow, Resilience Research Pod Mentors: Shafi Goldwasser and Venkat Guruswami	
	IBM Research Herman Goldstine Postdoctoral Fellow	′23 - ′24
Education	University of Wisconsin-Madison Ph.D., Department of Computer Sciences Advisors: Po-Ling Loh, Varun Jog, and Ilias Diakonikolas Title: Efficient Statistical Inference under Sampling and Computational Constraints <i>Graduate Student Research Award for the best Ph.D. thesis in the department</i>	′17 - ′23
	Indian Institute of Technology Kanpur B.Tech M.Tech. (Dual Degree), Department of Electrical Engineering	'12 - '17
Internship	Research Intern , Google Research, New York Mentors: Dr. Pranjal Awasthi and Dr. Satyen Kale Developed a scalable learning algorithm under fairness constraints and implemente (published in ALT 2024).	Summer '22 ed it in Tensorflow
Selected Awards	Simons-Berkeley Research Fellowship for 2024 IBM Herman Goldstine Postdoctoral Fellowship	
	Outstanding Graduate Student Research Award, 2023 (for the best Ph.D. Thesis), Univ Madison Computer Sciences Department	ersity of Wisconsin-
	Recognized as a top reviewer by ICML 2020, ICLR 2021, NeurIPS 2022, ICML 2024 Travel Awards: NeurIPS 2022 Scholar Award, ISIT 2018, ISIT 2019, ISIT 2022 Special CS Scholarship, UW-Madison for the year 2017-2018 Academic Excellence Award, IIT Kanpur for the year 2015-2016	
Representative Publications	 SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications with† I. Diakonikolas, S. Hopkins, and S. Tiegel Manuscript, 2024. 	
	We prove that for each subgaussian distribution, there is a small sum-of-squares proof the bounded. This result is surprising because it goes against the conventional wisdom of the result dramatically expands the scope of the current algorithmic toolkit to more general dist	at its moments are e community. Our stributions.
	 A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation A. Pensia International Conference on Machine Learning, 2024. 	ICML'24 (spotlight)
	We provide the first subquadratic time algorithm for robust sparse mean estimation, thus problem posed by Cheng and Diakonikolas. Our techniques overcome the $\Omega(d^2)$ bottlene need to use the sample covariance matrix to detect outliers. More details are available in the	answering an open ck arising from the is talk.

 The Sample Complexity of Simple Binary Hypothesis Testing 	
A. Pensia, V. Jog, and P. Loh	
Conference on Learning Theory, 2024.	

We revisit the fundamental statistical problem of simple binary hypothesis testing. Despite being studied since the early 1900s, the tight non-asymptotic rates of this problem were unknown (in contrast, the asymptotic error rates were very well-understood). We close this century-old gap and derive optimal non-asymptotic bounds.

	 Simple Binary Hypothesis Testing under Local Differential Privacy Trans. and Communication Constraints A. Pensia, A. Asadi, V. Jog, and P. Loh <i>IEEE Transactions on Information Theory</i>, 2024. An extended abstract appeared at COLT 2023. 	Inf. Theory COLT'23
	We study simple binary hypothesis testing in the presence of local differential privacy and/or conconstraints. While the very-high privacy regime ($\epsilon \ll 1$) was well-understood, practical applicate in moderate-privacy regime ($\epsilon \gg 1$). In this regime, we show new surprising phenomenon , both and statistical. For example, sometimes increasing the privacy budget does not improve statistical.	nmunication ions operate algorithmic accuracy.
	 Streaming Algorithms for High-Dimensional Robust Statistics with† I. Diakonikolas, D.M. Kane, and T. Pittas International Conference on Machine Learning, 2022. 	ICML'22
	For outlier-robust algorithms, we develop the first (runtime and sample-efficient) streaming alg (near-optimal) linear memory usage for a variety of high-dimensional tasks. All the prior robus needed to store the entire dataset in memory, thus requiring at least quadratic memory.	orithm with t algorithms
	 Outlier Robust Mean Estimation with Subgaussian Rates via Stability with† I. Diakonikolas and D. M. Kane Advances in Neural Information Processing Systems, 2020. 	NeurIPS'20
	We show that recent outlier-robust algorithms also achieve subgaussian confidence intervals for distributions, and vice-versa. In particular, we identify the "stability" condition as the bridge be two contamination models.	heavy-tailed etween these
Remaining Publications (chronological)	 SoS Certificates for Sparse Singular Values and Their Applications: Robust Statistics, Subspace Distortion, and More with† I. Diakonikolas, S. Hopkins, and S. Tiegel Manuscript, 2024. 	
	 Optimal Robust Estimation under Local and Global Corruptions: Stronger Adversary and Smaller Error with† T. Pittas Manuscript, 2024. 	
	 Robust Regression with Covariate Filtering: Heavy Tails and Adversarial Contamination A. Pensia, V. Jog, and P. Loh Journal of the American Statistical Association, 2024. 	JASA
	 Black-Box k-to-1-PCA Reductions: Theory and Applications with† A. Jambulapati, S. Kumar, J. Li, S. Pandey, K. Tian Conference on Learning Theory, 2024. 	COLT'24
	 Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination with† I. Diakonikolas, D.M. Kane, S. Karmalkar, and T. Pittas International Conference on Machine Learning, 2024. 	ICML'24

[†]Alphabetical ordering as per the convention in theoretical computer science.

۵	Semi-supervised Group DRO: Combating Sparsity with Unlabeled Data with† P. Awasthi and S. Kale <i>Algorithmic Learning Theory</i> , 2024.	ALT'24
۵	Communication-constrained hypothesis testing: Optimality, robustness, and reverse data processing inequalities A. Pensia , V. Jog, and P. Loh <i>IEEE Transactions on Information Theory</i> , 2024. A shorter version appeared at ISIT 2022.	Trans. Inf. Theory ISIT'22
۵	A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm with† I. Diakonikolas, D.M. Kane, J. C. H. Lee, and T. Pittas <i>Advances in Neural Information Processing Systems</i> , 2023.	NeurIPS'23 (spotlight)
۵	Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression with† I. Diakonikolas, D.M. Kane, and T. Pittas Advances in Neural Information Processing Systems, 2023.	NeurIPS'23
۵	Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA with† I. Diakonikolas, D.M. Kane, and T. Pittas International Conference on Machine Learning, 2023.	ICML'23
۵	Gaussian Mean Testing Made Simple with I. Diakonikolas and D. M. Kane SIAM Symposium on Simplicity in Algorithms, 2023.	SOSA'23
۵	Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions with [†] I. Diakonikolas, D. M. Kane, and J. C. H. Lee [•] Advances in Neural Information Processing Systems, 2022	NeurIPS'22
۵	List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering with† I. Diakonikolas, D.M. Kane, S. Karmalkar, and T. Pittas Advances in Neural Information Processing Systems, 2022.	NeurIPS'22 (oral)
۵	Robust Sparse Mean Estimation via Sum of Squares with† I. Diakonikolas, D.M. Kane, S. Karmalkar, and T. Pittas <i>Conference on Learning Theory</i> , 2022.	COLT'22
۵	Sharp Concentration Inequalities for the Centered Relative Entropy with† A. Bhatt Information and Inference: A Journal of the IMA, 2022.	Information and Inference
۵	Statistical Query Lower Bounds for List-Decodable Linear Regression with [†] I. Diakonikolas, D. M. Kane, T. Pittas, and A. Stewart <i>Advances in Neural Information Processing Systems</i> , 2021.	NeurIPS'21 (spotlight)
۵	Estimating Location Parameters in Sample-heterogeneous Distributions A. Pensia , V. Jog, and P. Loh <i>Information and Inference: A Journal of the IMA</i> , 2021. A shorter version appeared at ISIT 2019.	Information and Inference
۵	Optimal Lottery Tickets via SubsetSum: Logarithmic Over-Parameterization is Sufficient A. Pensia *, S. Rajput*, A. Nagle, H. Vishwakarma, and D. Papailiopoulos <i>Advances in Neural Information Processing Systems</i> , 2020.	NeurIPS'20 (spotlight)

[†]Alphabetical ordering as per the convention in theoretical computer science. *Equal contribution.

	 Extracting Robust and Accurate Features via a Robust Information Bottleneck A. Pensia, V. Jog, and P. Loh IEEE Journal on Selected Areas in Information Theory, 2020. 	JSAIT
	 Deep Topic Models for Multi-Label Learning R. Panda*, A. Pensia*, N. Mehta, M. Zhou, and P. Rai International Conference on Artificial Intelligence and Statistics, 2019. 	AISTATS'19
	 Generalization Error Bounds for Noisy, Iterative Algorithms A. Pensia, V. Jog, and P. Loh IEEE International Symposium on Information Theory, 2018. 	ISIT'18
Academic	Simons Institute for the Theory of Computing	Fall '21
VISItS	 Participated in the "Computational Complexity of Statistical Inference" program 	
	Centre for Mathematical Sciences, University of Cambridge	Spring '22
Professional Service	Workshop co-organizer at ICLR 2023: Pitfalls of limited data and computation for Tru	istworthy ML.
	Area chair: ALT 2024	
	Journal reviewer: \diamond Annals of Statistics \diamond Annales de l'Institut Henri Poincaré \diamond IE on Information Theory \diamond Information and Inference: A journal of the IMA. American Statistical Association (JASA) \diamond IEEE Journal on Selected Areas in Info (JSAIT) \diamond Journal of Machine Learning Research (JMLR) \diamond Journal of the Royal St Series B (JRRSB) \diamond Machine Learning (Springer) \diamond SIAM Journal on Mathematics (SIMODS) \diamond Statistics & Probability Letters	EE Transactions Journal of the rmation Theory atistical Society: of Data Science
	Conference reviewer:	24
	In total, I have completed 100+ reviews.	
	Mentored an undergraduate student as part of the WISCERS program in 2020-2021.	
	Mentor, Learning Theory Alliance Workshop at NeurIPS 2024	
Invited Talks	SoS Certifiability of Subgaussian Distributions and Its Algorithmic Applications	
	 Simons Institute (Industry Day), UC Berkeley, 2024 	
	 TOCA-SV@Stanford (Graduating Bits), Stanford University, 2024 	
	Towards Practical Algorithms for Outlier-Robust Estimation	
	 Meet the Fellows, Simons Institute, UC Berkeley, 2024 	
	Robust sparse estimation: An overview	
	 Workshop on New Frontiers in Robust Statistics, TTIC, Chicago, 2024 	
	Non-asymptotic simple binary hypothesis testing	
	 Conference on Learning Theory, Edmonton, 2024 IBM Math and TCS Council, 2023 	
	Simple binary hypothesis testing: Locally private and communication-efficient	
	 IMS International Conference on Statistics and Data Science (ICSDS), Portugal, 20 	023
	 Conference on Learning Theory, Bangalore, 2023 	
	 International Indian Statistical Association (IISA), Colorado, 2023 	

- ▷ Information Theory and Applications Workshop (ITA), San Diego, 2023
- ▷ Algorithms Seminar, Google, 2023

Hypothesis testing under communication constraints

- ▷ Conference on Information Sciences and Systems (CISS), 2022
- ▷ Institute for Foundations of Data Science (IFDS) Ideas Forum at UW-Madison, 2022

Statistical query lower bounds for list-decodable linear regression

▶ Reading group on "Statistical Query" at Simons Institute for the Theory of Computing, 2021

Robust estimation in high dimensions: Heavy tails and adversarial contamination

- ▷ Foundations of Data Science, Yale University, 2023
- ▶ ETH AI Center Symposium, 2022
- ▷ Cornell Young Researchers Workshop, 2021
- ▷ IFDS Workshop on Statistical Approaches to Understanding Modern ML Methods, 2021
- ▶ IFDS Seminar at UW-Madison, 2020

Estimating location parameters in entangled single-sample distributions

▷ IFDS Seminar at UW-Madison, 2019