Simple Binary Hypothesis Testing: Locally Private and Communication-Efficient

Ankit Pensia

Algorithms Seminar, Google

Joint Work With

Amir Asadi

Varun Jog

Po-Ling Loh

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
-Conclusion

Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
 Input: i.i.d. samples from either p or q

Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- Arguably, the most fundamental statistical problem

- A natural building block
- Optimal test: Likelihood ratio test

Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- Arguably, the most fundamental statistical problem

- A natural building block
- Optimal test: Likelihood ratio test

Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- Arguably, the most fundamental statistical problem

- A natural building block
- Optimal test: Likelihood ratio test
- Data is distributed these days
- Limited communication bandwidth
- Privacy concerns

Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- Arguably, the most fundamental statistical problem

- A natural building block
- Optimal test: Likelihood ratio test
- Data is distributed these days
- Limited communication bandwidth.
- Privacy concerns

Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- : captures communication and/or privacy

Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing): Input: modified samples from either p or q Output: whether they came from p or q

- : captures communication and/or privacy

Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing): Input: modified samples from either p or q Output: whether they came from p or q

- : captures communication and/or privacy

Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q
Output: whether they came from p or q

- : captures communication and/or privacy

How do we perform decentralized hypothesis testing?
[Tsi93] J. Tsitsiklis. Decentralized Detection. 1993

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
-Conclusion

Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel is ϵ-LDP if:

$$
\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x^{\prime}\right)} \leq e^{\epsilon} \text { for all } x, x^{\prime}, y
$$

Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel is ϵ-LDP if:

Can't reliably distinguish between x $\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x^{\prime}\right)} \leq e^{\epsilon}$ for all x, x^{\prime}, y

Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel is ϵ-LDP if:

Can't reliably distinguish between x

$$
\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x \prime\right)} \leq e^{\epsilon} \text { for all } x, x^{\prime}, y
$$ and x^{\prime} using values of Y_{i}

- Non-interactive (private-coin): Y_{i} 's are independent

Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel ${ }^{8}$ is ϵ-LDP if:

Can't reliably distinguish between x

$$
\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x^{\prime}\right)} \leq e^{\epsilon} \text { for all } x, x^{\prime}, y
$$ and x^{\prime} using values of Y_{i}

- Non-interactive (private-coin): Y_{i} 's are independent

- Communication-constraints
- $Y_{i} \in\{1, \ldots, \ell\}$ for some $\ell \ll k$ Input: modified samples from either p or q Output: whether they came from p or q

Goal: Design the test and channels so that the probability of error ≤ 0.1
 Input: modified samples from either p or q Output: whether they came from p or q

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal
 Input: modified samples from either p or q Output: whether they came from p or q

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal
$n_{\text {original }}^{*}:=$ Sample complexity (no constraints)

$n_{\text {constraints }}^{*}:=$ Sample complexity with channels satisfying constraints Input: modified samples from either p or q Output: whether they came from p or q

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal
$n_{\text {original }}^{*}:=$ Sample complexity (no constraints)

$n_{\text {constraints }}^{*}:=$ Sample complexity with channels satisfying constraints

Questions:

Problem (Decentralized Simple Hypothesis Testing):

 Input: modified samples from either p or q Output: whether they came from p or qGoal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal
$n_{\text {original }}^{*}:=$ Sample complexity (no constraints)

$n_{\text {constraints }}^{*}:=$ Sample complexity with channels satisfying constraints

Questions:

1. (Statistical) How much does sample complexity change?

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal
$n_{\text {original }}^{*}:=$ Sample complexity (no constraints)

$n_{\text {constraints }}^{*}:=$ Sample complexity with channels satisfying constraints

Questions:

1. (Statistical) How much does sample complexity change?
$n_{\text {original }}^{*}$ vs. $n_{\text {constraints }}^{*}$
2. (Computational) How to find (near)-optimal channels fast?

Warmup: Scheffe's Test (Popular but Sub-optimal)

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied

Warmup: Scheffe’s Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Warmup: Scheffe’s Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example

$$
\mathrm{p}=\left(\begin{array}{c}
0.5-2 \alpha \\
0.5+\alpha \\
\alpha
\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right)
$$

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example $\mathrm{p}=\left(\begin{array}{c}0.5-2 \alpha \\ 0.5+\alpha \\ \alpha\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}0.5 \\ 0.5 \\ 0\end{array}\right)$

$$
\text { Needs only } 1 / \alpha \text { samples }
$$

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

$$
\text { Needs only } 1 / \alpha \text { samples }
$$

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example $\mathrm{p}=\left(\begin{array}{c}0.5-2 \alpha \\ 0.5+\alpha \\ \alpha\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}0.5 \\ 0.5 \\ 0\end{array}\right) \quad A=\{2,3\} \quad \mathrm{P}^{\prime}=\binom{0.5-2 \alpha}{0.5+2 \alpha} \quad \mathrm{q}^{\prime}=\binom{0.5}{0.5}$

$$
\text { Needs only } 1 / \alpha \text { samples }
$$

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example $\mathrm{p}=\left(\begin{array}{c}0.5-2 \alpha \\ 0.5+\alpha \\ \alpha\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}0.5 \\ 0.5 \\ 0\end{array}\right) \quad A=\{2,3\}$ Needs only $1 / \alpha$ samples

$$
\mathrm{p}^{\prime}=\binom{0.5-2 \alpha}{0.5+2 \alpha} \quad \mathrm{q}^{\prime}=\left[\begin{array}{c}
0.5 \\
0.5
\end{array}\right]
$$

Warmup: Scheffe's Test (Popular but Sub-optimal)

- Scheffe's Test
- Let $A \subset[k]$ be the set $\left\{j: p_{j} \geq q_{j}\right\}$
- Set $Y_{i}=1$ if $X_{i} \in A$, else 0
- Output p if $\sum_{i} Y_{i}$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example $\mathrm{p}=\left(\begin{array}{c}0.5-2 \alpha \\ 0.5+\alpha \\ \alpha\end{array}\right) \quad \mathrm{q}=\left[\begin{array}{c}0.5 \\ 0.5 \\ 0\end{array}\right) \quad A=\{2,3\}$ $\mathrm{p}^{\prime}=\binom{0.5-2 \alpha}{0.5+2 \alpha} \quad \mathrm{q}^{\prime}=\binom{0.5}{0.5}$

Needs only $1 / \alpha$ samples
Is this quadratic blowup necessary?

Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
-Conclusion

Our Results: Statistical Cost Of Communication Constraints
$n^{*}:=$ Sample complexity without constraints
$n_{\text {comm }}^{*}(\ell):=$ Sample complexity with channels of ℓ messages

Our Results: Statistical Cost Of Communication Constraints
$n^{*}:=$ Sample complexity without constraints
$n_{\text {comm }}^{*}(\ell):=$ Sample complexity with channels of ℓ messages

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$
n_{\mathrm{comm}}^{*}(\ell) \precsim n^{*}\left(1+\frac{\log n^{*}}{\ell}\right)
$$

- The sample complexity increases by at most a logarithmic factor

Our Results: Statistical Cost Of Communication Constraints
$n^{*}:=$ Sample complexity without constraints
$n_{\text {comm }}^{*}(\ell):=$ Sample complexity with channels of ℓ messages
Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$
n_{\text {comm }}^{*}(\ell) \lesssim n^{*}\left(1+\frac{\log n^{*}}{\ell}\right)
$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor

Our Results: Statistical Cost Of Communication Constraints

$n^{*}:=$ Sample complexity without constraints
$n_{\text {comm }}^{*}(\ell):=$ Sample complexity with channels of ℓ messages
Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$
n_{\mathrm{comm}}^{*}(\ell) \precsim n^{*}\left(1+\frac{\log n^{*}}{\ell}\right)
$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor
- "Effective" domain size is $\log n^{*}$

Our Results: Statistical Cost Of Communication Constraints

$n^{*}:=$ Sample complexity without constraints
$n_{\text {comm }}^{*}(\ell):=$ Sample complexity with channels of ℓ messages

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$
n_{\mathrm{comm}}^{*}(\ell) \precsim n^{*}\left(1+\frac{\log n^{*}}{\ell}\right)
$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor
- "Effective" domain size is $\log n^{*}$
- Also holds under additional constraints: robustness, privacy,...

Our Results: Statistical Cost Of Communication Constraints

$n^{*}:=$ Sample complexity without constraints
$n_{\text {comm }}^{*}(\ell):=$ Sample complexity with channels of ℓ messages

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$
n_{\mathrm{comm}}^{*}(\ell) \precsim n^{*}\left(1+\frac{\log n^{*}}{\ell}\right)
$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor
- "Effective" domain size is $\log n^{*}$
- Also holds under additional constraints: robustness, privacy,...
- Closely related to preserving mutual information under quantization

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

$$
e^{\epsilon}-1
$$

(Privacy parameter)

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

$n_{\text {priv }}^{*}(\epsilon)$

$$
e^{\epsilon}-1
$$

No privacy
(Privacy parameter)

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

(Privacy parameter)

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.
[AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

[PAJL23]: Existing lower bound is tight for Bernoulli distributions

Statistical Cost of Privacy: Existing Results

$n_{\text {priv }}^{*}(\epsilon):=$ Sample complexity with ϵ-LDP channels

[PAJL23]: Existing lower bound is tight for Bernoulli distributions

What about general distributions?

Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions p and q with larger sample complexities.

Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions p and q with larger sample complexities.

Theorem[PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.

Exact Expressions and Simulations

Minimax Optimality and Looking Beyond

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the class of distributions with certain total variation distance and Hellinger divergence.

Minimax Optimality and Looking Beyond

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the class of distributions with certain total variation distance and Hellinger divergence.

Minimax Optimality and Looking Beyond

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the class of distributions with certain total variation distance and Hellinger divergence.

Best-case: binary

Worst-case: distributions from the lower bound

Minimax Optimality and Looking Beyond

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the class of distributions with certain total variation distance and Hellinger divergence.

Best-case: binary

Worst-case: distributions from the lower bound

Real-life instances are neither the best-case nor the worst-case

Minimax Optimality and Looking Beyond

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the class of distributions with certain total variation distance and Hellinger divergence.

Best-case: binary

Worst-case: distributions from the lower bound

Real-life instances are neither the best-case nor the worst-case

Minimax Optimality and Looking Beyond

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the class of distributions with certain total variation distance and Hellinger divergence.

Best-case: binary

Worst-case: distributions from the lower bound

Are there efficient algorithms that adapt to the given instance?

Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
- Conclusion

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$: Well-understood

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$: Well-understood
- $\epsilon \gg 1$: No existing polynomial-time algorithm
- Naïve algorithm would be $2^{k^{2}}$
- [KOV14] gave an exponential-time algorithm

Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$: Well-understood
- $\epsilon \gg 1$: No existing polynomial-time algorithm
- Naïve algorithm would be $2^{k^{2}}$
- [KOV14] gave an exponential-time algorithm

Can we efficiently find the (near)-optimal channel?

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ,

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a linear-time algorithm to find an ϵ-LDP channel

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a linear-time algorithm to find an ϵ-LDP channel whose sample complexity is near-optimal for $\boldsymbol{p}, \boldsymbol{q}$, and $\boldsymbol{\epsilon}$.

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a linear-time algorithm to find an ϵ-LDP channel whose sample complexity is near-optimal for $\boldsymbol{p}, \boldsymbol{q}$, and $\boldsymbol{\epsilon}$.

- The channel uses only an output domain of size 2 (single bit)

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a linear-time algorithm to find an ϵ-LDP channel whose sample complexity is near-optimal for $\boldsymbol{p}, \boldsymbol{q}$, and $\boldsymbol{\epsilon}$.

- The channel uses only an output domain of size 2 (single bit)
- Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a linear-time algorithm to find an ϵ-LDP channel whose sample complexity is near-optimal for $\boldsymbol{p}, \boldsymbol{q}$, and $\boldsymbol{\epsilon}$.

- The channel uses only an output domain of size 2 (single bit)
- Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP
- Can be generalized to have a smooth tradeoff:

Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a linear-time algorithm to find an ϵ-LDP channel whose sample complexity is near-optimal for $\boldsymbol{p}, \boldsymbol{q}$, and $\boldsymbol{\epsilon}$.

- The channel uses only an output domain of size 2 (single bit)
- Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP
- Can be generalized to have a smooth tradeoff:
- A poly $\ell_{\ell}\left(k^{\ell^{2}}\right)$-time algorithm to an ℓ-output channel with sample complexity

$$
n_{\text {priv }}^{*}(\epsilon) \cdot\left(1+\frac{\log n_{\text {priv }}^{*}(\epsilon)}{\ell}\right)
$$

Our Results: Computational Cost of Privacy, Generalized

- More broadly, consider the optimization problem

- Examples: f-divergences, Renyi Entropy, Wasserstein Norm
- Maximal separation between p and q after privatization

Our Results: Computational Cost of Privacy, Generalized

- More broadly, consider the optimization problem

- Examples: f-divergences, Renyi Entropy, Wasserstein Norm
- Maximal separation between p and q after privatization

Recall: maximizing a convex objective is usually hard!

- More broadly, consider the optimization problem

- Examples: f-divergences, Renyi Entropy, Wasserstein Norm
- Maximal separation between p and q after privatization

Recall: maximizing a convex objective is usually hard!

Theorem[PAJL23] There is a poly $\ell_{\ell}\left(k^{\ell^{2}}\right)$-time algorithm to find the optimum.

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
- Statistical
- Computational
-Conclusion

Proof Sketch: How to choose optimal \mathbb{T} ?

- Suppose that every channel is fixed to be \mathbb{T}

Proof Sketch: How to choose optimal \mathbb{T} ?

- Suppose that every channel is fixed to be \mathbb{T}
- Then, each Y_{i} is either distributed as $\mathbb{T} p$ or as $\mathbb{T} q$

Proof Sketch: How to choose optimal \mathbb{T} ?

- Suppose that every channel is fixed to be \mathbb{T}
- Then, each Y_{i} is either distributed as $\mathbb{T} p$ or as $\mathbb{T} q$

- We are effectively testing between $\mathbb{T} p$ and $\mathbb{T} q$

Proof Sketch: How to choose optimal \mathbb{T} ?

- Suppose that every channel is fixed to be \mathbb{T}
- Then, each Y_{i} is either distributed as $\mathbb{T} p$ or as $\mathbb{T} q$

- We are effectively testing between $\mathbb{T} p$ and $\mathbb{T} q$
- Thus, the sample complexity is $\frac{1}{d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)}$

Proof Sketch: How to choose optimal \mathbb{T} ?

- Suppose that every channel is fixed to be \mathbb{T}
- Then, each Y_{i} is either distributed as $\mathbb{T} p$ or as $\mathbb{T} q$

- We are effectively testing between $\mathbb{T} p$ and $\mathbb{T} q$
- Thus, the sample complexity is $\frac{1}{d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)}$
- Leads to optimal choice of \mathbb{T} :

Proof Sketch: How to choose optimal \mathbb{T} ?

- Suppose that every channel is fixed to be \mathbb{T}
- Then, each Y_{i} is either distributed as $\mathbb{T} p$ or as $\mathbb{T} q$

- We are effectively testing between $\mathbb{T} p$ and $\mathbb{T} q$
- Thus, the sample complexity is $\frac{1}{d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)}$
- Leads to optimal choice of \mathbb{T} :

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
- Statistical
- Computational
-Conclusion

Proof Sketch: Statistical Cost of Privacy

- Need to understand $\max _{\mathbb{T}: \in \in \mathrm{LP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$

Proof Sketch: Statistical Cost of Privacy

- Need to understand $\max _{\mathbb{T}: \epsilon-\mathrm{LDP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Data processing inequality implies $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$ is smaller than $d_{h}^{2}(p, q)$

Proof Sketch: Statistical Cost of Privacy

- Need to understand $\max _{\mathbb{T}: \epsilon-\mathrm{LDP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Data processing inequality implies $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$ is smaller than $d_{h}^{2}(p, q)$
- Privacy requires adding noise, which results in much smaller $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Leads to "Strong data processing inequality"

Proof Sketch: Statistical Cost of Privacy

- Need to understand $\max _{\mathbb{T}: \epsilon-\mathrm{LDP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Data processing inequality implies $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$ is smaller than $d_{h}^{2}(p, q)$
- Privacy requires adding noise, which results in much smaller $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Leads to "Strong data processing inequality"
- Analyzing the maximum requires knowing the optimal \mathbb{T}
- Non-trivial in general but the binary setting is much easier (randomized-response)

Proof Sketch: Statistical Cost of Privacy

- Need to understand $\max _{\mathbb{T}: \in-\mathrm{LDP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Data processing inequality implies $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$ is smaller than $d_{h}^{2}(p, q)$
- Privacy requires adding noise, which results in much smaller $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Leads to "Strong data processing inequality"
- Analyzing the maximum requires knowing the optimal \mathbb{T}
- Non-trivial in general but the binary setting is much easier (randomized-response)

Proposition [PAJL23] If p and q are Bernoulli distributions and $\epsilon \gg 1$, then

Proof Sketch: Statistical Cost of Privacy

- Need to understand $\max _{\mathbb{T}: \in-\mathrm{LDP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Data processing inequality implies $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$ is smaller than $d_{h}^{2}(p, q)$
- Privacy requires adding noise, which results in much smaller $d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)$
- Leads to "Strong data processing inequality"
- Analyzing the maximum requires knowing the optimal \mathbb{T}
- Non-trivial in general but the binary setting is much easier (randomized-response)

Proposition [PAJL23] If p and q are Bernoulli distributions and $\epsilon \gg 1$, then $\max _{r: \epsilon-\mathrm{LDP}} d_{h}^{2}(\mathbb{T} p, \mathbb{T} q)=\min \left(e^{\epsilon} d_{\mathrm{TV}}^{2}(p, q), d_{h}^{2}(p, q)\right)$

- The decrease (or the contraction) depends also on the total variation distance

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}
- Can be shown that optimal \mathbb{T} is of the form
- First, a binary deterministic channel \mathbb{T}^{\prime}
- Then, the randomized-response to ensure privacy

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}
- Can be shown that optimal \mathbb{T} is of the form
- First, a binary deterministic channel \mathbb{T}^{\prime}
- Then, the randomized-response to ensure privacy

- Since the performance of randomized-response depends both on both d_{TV} and d_{h}^{2}
- \mathbb{T}^{\prime} must try to preserve both d_{TV} and d_{h}^{2}

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}
- Can be shown that optimal \mathbb{T} is of the form
- First, a binary deterministic channel \mathbb{T}^{\prime}
- Then, the randomized-response to ensure privacy

- Since the performance of randomized-response depends both on both d_{TV} and d_{h}^{2}
- \mathbb{T}^{\prime} must try to preserve both d_{TV} and d_{h}^{2}
- Unfortunately, both can not be preserved always (see example)

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}
- Can be shown that optimal \mathbb{T} is of the form
- First, a binary deterministic channel \mathbb{T}^{\prime}
- Then, the randomized-response to ensure privacy

- Since the performance of randomized-response depends both on both d_{TV} and d_{h}^{2}
- $\quad \mathbb{T}^{\prime}$ must try to preserve both d_{TV} and d_{h}^{2}
- Unfortunately, both can not be preserved always (see example)

$$
\mathrm{p}=\left(\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}
0.5-\alpha-\gamma \\
0.5-\alpha+\gamma \\
2 \alpha
\end{array}\right)
$$

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}
- Can be shown that optimal \mathbb{T} is of the form
- First, a binary deterministic channel \mathbb{T}^{\prime}
- Then, the randomized-response to ensure privacy

- Since the performance of randomized-response depends both on both d_{TV} and d_{h}^{2}
- \mathbb{T}^{\prime} must try to preserve both d_{TV} and d_{h}^{2}
- Unfortunately, both can not be preserved always (see example)

$$
\mathrm{p}=\left(\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}
0.5-\alpha-\gamma \\
0.5-\alpha+\gamma \\
2 \alpha
\end{array}\right)
$$

Proof Sketch: Why Is Ternary Much Harder?

- Suppose, we are interested in a binary private channel \mathbb{T}
- Can be shown that optimal \mathbb{T} is of the form
- First, a binary deterministic channel \mathbb{T}^{\prime}
- Then, the randomized-response to ensure privacy

- Since the performance of randomized-response depends both on both d_{TV} and d_{h}^{2}
- \mathbb{T}^{\prime} must try to preserve both d_{TV} and d_{h}^{2}
- Unfortunately, both can not be preserved always (see example)

$$
\mathrm{p}=\left(\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right) \quad \mathrm{q}=\left(\begin{array}{c}
0.5-\alpha-\gamma \\
0.5-\alpha+\gamma \\
2 \alpha
\end{array}\right) \text { Dominant contribution to } d_{\mathrm{TV}}
$$

- If \mathbb{T}^{\prime} preserves Hellinger divergence, then the total variation decreases, and vice versa

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
- Statistical
- Computational
-Conclusion

Extreme points lead to optimal performance

- Recall the original objective

Extreme points lead to optimal performance

- Recall the original objective

- Let the joint range be $\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$

Extreme points lead to optimal performance

- Recall the original objective

- Let the joint range be $\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$
- By convexity of g and \mathcal{A}, the maximum value is attained at \mathbb{T} only if ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}

Extreme points lead to optimal performance

- Recall the original objective

- Let the joint range be $\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$
- By convexity of g and \mathcal{A}, the maximum value is attained at \mathbb{T} only if ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}

Extreme Points of the Joint Range: First Attempt

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q)$ is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

Extreme Points of the Joint Range: First Attempt

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$

Extreme Points of the Joint Range: First Attempt

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q)$ is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$

Extreme Points of the Joint Range: First Attempt

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The Good: Privacy step is independent of k

Extreme Points of the Joint Range: First Attempt

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The Good: Privacy step is independent of k
- The bad: The number of deterministic channels is ℓ^{k}

Extreme Points of the Joint Range: First Attempt

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] if ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The Good: Privacy step is independent of k
- The bad: The number of deterministic channels is ℓ^{k}

Can we further reduce the search space in the first step?

Extreme Points of the Joint Range: Final

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ
Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a threshold deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$

Extreme Points of the Joint Range: Final

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a threshold deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The number of threshold channels is only polynomial, $k^{\text {poly(}()}$

Extreme Points of the Joint Range: Final

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a threshold deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The number of threshold channels is only polynomial, $k^{\text {poly(}()}$

Extreme Points of the Joint Range: Final

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a threshold deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The number of threshold channels is only polynomial, $k^{\text {poly(}()}$

Threshold Channel: A deterministic channel \mathbb{T} is a threshold channel for p and q if \mathbb{T} partitions the input domain by thresholding the likelihood ratios of p and q.

Extreme Points of the Joint Range: Final

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a threshold deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The number of threshold steps is only polynomial, $k^{\text {poly }(\ell)}$

Extreme Points of the Joint Range: Final

$$
\mathcal{A}:=\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}
$$

Theorem [PAJL23] if $(\mathbb{T} p, \mathbb{T} q$) is an extreme point of \mathcal{A}, then \mathbb{T} can be decomposed as

- First, a threshold deterministic channel from $[k]$ to $\left[2 \ell^{2}\right]$
- Then, a (randomized) ϵ-LDP channel from $\left[2 \ell^{2}\right]$ to $[\ell]$
- The number of threshold steps is only polynomial, $k^{\text {poly }(\ell)}$

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
- Statistical
- Computational
- Threshold Channels
-Conclusion

Structural Result: Optimality of Thresholds under Quantization

- For simplicity, let's focus only on communication constraints

Structural Result: Optimality of Thresholds under Quantization

- For simplicity, let's focus only on communication constraints

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

Structural Result: Optimality of Thresholds under Quantization

- For simplicity, let's focus only on communication constraints

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q)$ is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

Structural Result: Optimality of Thresholds under Quantization

- For simplicity, let's focus only on communication constraints

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$$
\mathcal{P}_{\text {comm }}(\ell) \text { : All channels of output size } \ell
$$

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

- \# of extreme points of $\mathcal{A}_{\text {comm }}, k^{\ell}$, is much smaller than that of $\mathcal{P}_{\text {comm }}, \ell^{k}$.

Structural Result: Optimality of Thresholds under Quantization

- For simplicity, let's focus only on communication constraints

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}(\ell)\right\}
$$

Theorem[PAJL23] If $(\mathbb{T} p, \mathbb{T} q)$ is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

- \# of extreme points of $\mathcal{A}_{\text {comm }}, k^{\ell}$, is much smaller than that of $\mathcal{P}_{\text {comm }}, \ell^{k}$.

Corollary [PAJL23]: poly $\left(k^{\ell}\right)$-time algorithms to maximize convex functions over $\mathcal{A}_{\text {comm }}$.

Proof Sketch: Optimality of Threshold Channels under Quantization
$\mathcal{A}_{\text {comm }}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}(\ell)\right\} \quad \mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels under Quantization
$\mathcal{A}_{\text {comm }}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}^{r}(\ell)\right\} \quad \mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

Proof: Suppose \mathbb{T} is not a threshold channel.

$$
\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}<\frac{p_{3}}{q_{3}}
$$

Proof Sketch: Optimality of Threshold Channels under Quantization
$\mathcal{A}_{\text {comm }}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}^{r}(\ell)\right\} \quad \mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.

Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization

$\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization
$\mathcal{A}_{\text {comm }}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization
$\mathcal{A}_{\text {comm }}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization
$\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization
$\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization
$\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

Proof Sketch: Optimality of Threshold Channels for Quantization

$\mathcal{A}_{\text {comm }}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\text {comm }}(\ell)\right\}$
$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q$

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p \quad$ (2 has higher likelihood ratio)

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p \quad$ (2 has higher likelihood ratio)

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p \quad$ (2 has higher likelihood ratio)

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p \quad$ (2 has higher likelihood ratio)

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p \quad$ (2 has higher likelihood ratio)

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q=\mathbb{T}^{\prime \prime} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p$ (2 has higher likelihood ratio)

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q=\mathbb{T}^{\prime \prime} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p$ (2 has higher likelihood ratio)
- But, $\mathbb{T}^{\prime \prime} p$ puts less mass on \bigcirc than $\mathbb{T} p$

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If ($\mathbb{T} p, \mathbb{T} q$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q=\mathbb{T}^{\prime \prime} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p$ (2 has higher likelihood ratio)
- But, $\mathbb{T}^{\prime \prime} p$ puts less mass on \bigcirc than $\mathbb{T} p$
- Fluctuations in opposite directions $\rightarrow(\mathbb{T} p, \mathbb{T} q)$ can't be an extreme point

Proof Sketch: Optimality of Threshold Channels for Quantization

$$
\mathcal{A}_{\mathrm{comm}}:=\left\{(\mathbb{T} p, \mathbb{T} q): \mathbb{T} \in \mathcal{P}_{\mathrm{comm}}(\ell)\right\}
$$

$\mathcal{P}_{\text {comm }}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $\left(\mathbb{T} p, \mathbb{T} q\right.$) is an extreme point of $\mathcal{A}_{\text {comm }}$, then \mathbb{T} must be a threshold channel.
Proof: Suppose \mathbb{T} is not a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}^{\prime} q=\mathbb{T} q=\mathbb{T}^{\prime \prime} q$
- However, $\mathbb{T}^{\prime} p$ puts more mass on \bigcirc than $\mathbb{T} p$ (2 has higher likelihood ratio)
- But, $\mathbb{T}^{\prime \prime} p$ puts less mass on \bigcirc than $\mathbb{T} p$
- Fluctuations in opposite directions $\rightarrow(\mathbb{T} p, \mathbb{T} q)$ can't be an extreme point

Outline

- Motivation
- Problem Statement
- Our Results
- Proof Sketch
-Conclusion

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Algorithms with better runtime dependence on ℓ--- the output size

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Algorithms with better runtime dependence on ℓ--- the output size
- Characterization of instance-optimal sample complexity
- Looking beyond TV distance and Hellinger divergence

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Algorithms with better runtime dependence on ℓ--- the output size
- Characterization of instance-optimal sample complexity
- Looking beyond TV distance and Hellinger divergence
- M-ary hypothesis testing, optimally

Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Algorithms with better runtime dependence on ℓ--- the output size
- Characterization of instance-optimal sample complexity
- Looking beyond TV distance and Hellinger divergence
- M-ary hypothesis testing, optimally

Thank you!

