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• : captures communication and/or privacy

How do we perform decentralized hypothesis testing?

• Let 𝑝 and 𝑞 be two known distributions over {1,… , 𝑘}
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• Channel        is 𝜖-LDP if:
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Questions of Interest

1. (Statistical) How much does sample complexity change?
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Our Results: Statistical Cost Of Communication Constraints

𝑛∗ ≔ Sample complexity without constraints
𝑛comm
∗ (ℓ) ≔ Sample complexity with channels of ℓ messages

Theorem [PJL22] (Statistical cost of communication constraints) For ℓ ≥ 2,

𝑛comm
∗ (ℓ) ≾ 𝑛∗ 1 +

log 𝑛∗

ℓ

Moreover, there exist cases where this is tight.

• The sample complexity increases by at most a logarithmic factor
• “Effective” domain size is log 𝑛∗

• Also holds under additional constraints: robustness, privacy,…
• Closely related to preserving mutual information under quantization 

𝑛Scheffe
∗ ≾ 𝑛∗ 2

[BNOP21] A. Bhatt, B. Nazer, O. Ordentlich, Y. Polyanskiy. Information-Distilling Quantizers. 2021.
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Can we efficiently find the (near)-optimal channel?
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Theorem[PAJL23] Given any two distributions 𝑝 and 𝑞 on 𝑘 and 𝜖, 

there is a linear-time algorithm to find an 𝜖-LDP channel 

whose sample complexity is near-optimal for 𝒑, 𝒒, and 𝝐.

• The channel uses only an output domain of size 2 (single bit)

• Can be generalized to have a smooth tradeoff:

• A polyℓ 𝑘ℓ
2

-time algorithm to an ℓ-output channel with sample complexity

• Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP

𝑛priv
∗ 𝜖 ⋅ 1 +

log 𝑛priv
∗ (𝜖)

ℓ
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• Can be shown that optimal 𝕋 is of the form

• First, a binary deterministic channel 𝕋′

• Then, the randomized-response to ensure privacy

• Since the performance of randomized-response depends both on both 𝑑TV and 𝑑ℎ
2

• 𝕋′ must try to preserve both 𝑑TV and 𝑑ℎ
2
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Threshold Channel: A deterministic channel 𝕋 is a threshold channel 
for 𝑝 and 𝑞 if 𝕋 partitions the input domain by thresholding the 
likelihood ratios of 𝑝 and 𝑞.
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Thank you!
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