

Simple Binary Hypothesis Testing: Locally Private and Communication-Efficient

Ankit Pensia

Algorithms Seminar, Google

Joint Work With

Amir Asadi

Varun Jog

Po-Ling Loh

Outline

Motivation

- Problem Statement
- ► Our Results
- Proof Sketch
- ► Conclusion

• Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Simple Hypothesis Testing): Input: i.i.d. samples from either p or q

• Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

- Arguably, the most fundamental statistical problem
 - A natural building block
 - Optimal test: Likelihood ratio test

• Let p and q be two known distributions over $\{1, \dots, k\}$

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

- Arguably, the most fundamental statistical problem
 - A natural building block
 - Optimal test: Likelihood ratio test

• Let p and q be two known distributions over $\{1, \dots, k\}$

Problem (Simple Hypothesis Testing): Input: i.i.d. samples from either p or q Output: whether they came from p or q

- Arguably, the most fundamental statistical problem
 - A natural building block
 - Optimal test: Likelihood ratio test
- Data is distributed these days
 - Limited communication bandwidth
 - Privacy concerns

Requires access to X_i's

• Let p and q be two known distributions over $\{1, \dots, k\}$

Problem (Simple Hypothesis Testing): Input: i.i.d. samples from either p or q Output: whether they came from p or q

- Arguably, the most fundamental statistical problem
 - A natural building block
 - Optimal test: Likelihood ratio test
- Data is distributed these days
 - Limited communication bandwidth.
 - Privacy concerns

Requires access to X_i 's

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

• Second contraction and/or privacy

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Decentralized Simple Hypothesis Testing):Input:modified samples from either p or qOutput:whether they came from p or q

• Second contraction and/or privacy

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Decentralized Simple Hypothesis Testing):Input:modified samples from either p or qOutput:whether they came from p or q

• Second contraction and/or privacy

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Decentralized Simple Hypothesis Testing):Input:modified samples from either p or qOutput:whether they came from p or q

• Second contraction and/or privacy

How do we perform decentralized hypothesis testing?

Outline

- Motivation
- Problem Statement
- ► Our Results
- Proof Sketch
- ► Conclusion

- Local Differential Privacy (LDP)
 - Everyone releases a randomized version of data
 - Channel \mathbb{N} is ϵ -LDP if:

$$\frac{\mathbb{P}(Y_i = y \mid X_i = x)}{\mathbb{P}(Y_i = y \mid X_i = x')} \le e^{\epsilon} \text{ for all } x, x', y$$

- Communication-constraints
 - $Y_i \in \{1, \dots, \ell\}$ for some $\ell \ll k$

Questions of Interest

Problem (Decentralized Simple Hypothesis Testing):Input: modified samples from either p or qOutput: whether they came from p or q

Goal: Design the test and channels \mathbb{I} so that the probability of error ≤ 0.1

Questions of Interest

Goal: Design the test and channels \mathbb{I} so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

Questions of Interest

Goal: Design the test and channels \searrow so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

 $n^*_{\text{original}} \coloneqq \text{Sample complexity (no constraints)}$

 $n_{\text{constraints}}^* \coloneqq \text{Sample complexity with channels satisfying constraints}$

Questions of Interest

Goal: Design the test and channels \ge so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

 $n^*_{\text{original}} \coloneqq \text{Sample complexity}$ (no constraints)

 $n^*_{\text{constraints}} \coloneqq \text{Sample complexity with channels satisfying constraints}$

Questions:

Questions of Interest

Goal: Design the test and channels \ge so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

$$n^*_{\text{original}} \coloneqq \text{Sample complexity (no constraints)}$$

 $n^*_{\text{constraints}} \coloneqq \text{Sample complexity with channels satisfying constraints}$

Questions:

1. (Statistical) How much does sample complexity change?

Questions of Interest

Goal: Design the test and channels \searrow so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

$$n^*_{\text{original}} \coloneqq \text{Sample complexity (no constraints)}$$

 $n^*_{\text{constraints}} \coloneqq \text{Sample complexity with channels satisfying constraints}$

Questions:

- 1. (Statistical) How much does sample complexity change?
- 2. (Computational) How to find (near)-optimal channels fast?

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example
$$p = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + \alpha \\ \alpha \end{pmatrix}$$
 $q = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix}$

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example
$$p = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + \alpha \\ \alpha \end{pmatrix} q = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix}$$

Needs only $1/\alpha$ samples

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example
$$p = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + \alpha \\ \alpha \end{pmatrix}$$
 $q = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix}$ $A = \{2,3\}$
Needs only $1/\alpha$ samples

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example
$$p = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + \alpha \\ \alpha \end{pmatrix}$$
 $q = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix}$ $A = \{2,3\}$ $p' = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + 2\alpha \end{pmatrix}$ $q' = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$
Needs only $1/\alpha$ samples

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Example
$$p = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + \alpha \\ \alpha \end{pmatrix}$$
 $q = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix}$ $A = \{2,3\}$ $p' = \begin{pmatrix} 0.5 - 2\alpha \\ 0.5 + 2\alpha \end{pmatrix}$ $q' = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$
Needs only $1/\alpha$ samples Scheffe's test needs $1/\alpha^2$ samples

- Scheffe's Test
 - Let $A \subset [k]$ be the set $\{j: p_j \ge q_j\}$
 - Set $Y_i = 1$ if $X_i \in A$, else 0
 - Output p if $\sum_i Y_i$ is large enough, else q
- Pros: Simple, uses a single bit, and well-studied
- Cons: Sample complexity can increase quadratically!

Outline

- Motivation
- Problem Statement
- ► Our Results

► Statistical

► Computational

Proof Sketch

► Conclusion

Our Results: Statistical Cost Of Communication Constraints

 $n^*_{\text{Scheffe}} \preceq (n^*)^2$

 $n^* \coloneqq \text{Sample complexity without constraints}$ $n^*_{\text{comm}}(\ell) \coloneqq \text{Sample complexity with channels of } \ell \text{ messages}$
$n^*_{\text{Scheffe}} \precsim (n^*)^2$

 $n^* \coloneqq \text{Sample complexity without constraints}$ $n^*_{\text{comm}}(\ell) \coloneqq \text{Sample complexity with channels of } \ell \text{ messages}$

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$n_{\text{comm}}^*(\ell) \preceq n^*\left(1 + \frac{\log n^*}{\ell}\right)$$

• The sample complexity increases by at most a logarithmic factor

 $n^*_{\text{Scheffe}} \preceq (n^*)^2$

 $n^* \coloneqq \text{Sample complexity without constraints}$ $n^*_{\text{comm}}(\ell) \coloneqq \text{Sample complexity with channels of } \ell \text{ messages}$

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$n_{\mathrm{comm}}^*(\ell) \preceq n^*\left(1+\frac{\log n^*}{\ell}\right)$$

Moreover, there exist cases where this is tight.

• The sample complexity increases by at most a logarithmic factor

 $n^*_{\text{Scheffe}} \precsim (n^*)^2$

 $n^* \coloneqq \text{Sample complexity without constraints}$ $n^*_{\text{comm}}(\ell) \coloneqq \text{Sample complexity with channels of } \ell \text{ messages}$

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$n_{\mathrm{comm}}^*(\ell) \preceq n^*\left(1+\frac{\log n^*}{\ell}\right)$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor
- "Effective" domain size is $\log n^*$

 $n^*_{\text{Scheffe}} \precsim (n^*)^2$

 $n^* \coloneqq \text{Sample complexity without constraints}$ $n^*_{\text{comm}}(\ell) \coloneqq \text{Sample complexity with channels of } \ell \text{ messages}$

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$n_{\mathrm{comm}}^*(\ell) \preceq n^*\left(1 + \frac{\log n^*}{\ell}\right)$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor
- "Effective" domain size is $\log n^*$
- Also holds under additional constraints: robustness, privacy,...

 $n^*_{\text{Scheffe}} \precsim (n^*)^2$

 $n^* \coloneqq \text{Sample complexity without constraints}$ $n^*_{\text{comm}}(\ell) \coloneqq \text{Sample complexity with channels of } \ell \text{ messages}$

Theorem [PJL22] (Statistical cost of communication constraints) For $\ell \geq 2$,

$$n_{\mathrm{comm}}^*(\ell) \preceq n^*\left(1 + \frac{\log n^*}{\ell}\right)$$

Moreover, there exist cases where this is tight.

- The sample complexity increases by at most a logarithmic factor
- "Effective" domain size is $\log n^*$
- Also holds under additional constraints: robustness, privacy,...
- Closely related to preserving mutual information under quantization [BNOP21] A. Bhatt, B. Nazer, O. Ordentlich, Y. Polyanskiy. Information-Distilling Quantizers. 2021.

 $n^*_{\text{priv}}(\epsilon) \coloneqq$ Sample complexity with ϵ -LDP channels

 d_h^2 : Hellinger divergence d_{TV} : Total variation distance

Statistical Cost of Privacy: Existing Results

 d_h^2 : Hellinger divergence

 $d_{\rm TV}$: Total variation distance

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

dTV: Total variation distance Statistical Cost of Privacy: Existing Results

 d_h^2 : Hellinger divergence

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

 d_h^2 : Hellinger divergence

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

 d_h^2 : Hellinger divergence d_{TV} : Total variation distance

Statistical Cost of Privacy: Existing Results

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

 d_h^2 : Hellinger divergence d_{TV} : Total variation distance

Statistical Cost of Privacy: Existing Results

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

 d_h^2 : Hellinger divergence d_{TV} : Total variation distance

Statistical Cost of Privacy: Existing Results

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

Our Results: Minimax Optimal Sample Complexity

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Our Results: Minimax Optimal Sample Complexity

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Theorem[**PAJL**23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.

Exact Expressions and Simulations

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the

class of distributions with certain total variation distance and Hellinger divergence.

Best-case: binary

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the

Theorem[PAJL23] Characterization of the minimax-optimal sample complexity over the

class of distributions with certain total variation distance and Hellinger divergence.

Are there efficient algorithms that adapt to the given instance?

Outline

- Motivation
- Problem Statement
- ► Our Results
 - StatisticalComputational
- Proof Sketch
- ► Conclusion

• Recall we need to map the original data $X_i \rightarrow Y_i$

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel 🔊
 - Once the channel is fixed, perform likelihood ratio test

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No existing polynomial-time algorithm 😒
 - Naïve algorithm would be 2^{k^2}
 - [KOV14] gave an exponential-time algorithm

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No existing polynomial-time algorithm 😒
 - Naïve algorithm would be 2^{k^2}
 - [KOV14] gave an exponential-time algorithm

Can we efficiently find the (near)-optimal channel?

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a linear-time algorithm to find an ϵ -LDP channel 🔀

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel 🔀

whose sample complexity is **near-optimal for** p, q, and ϵ .

Theorem[**PAJL**23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal for** p, q, and ϵ .

• The channel uses only an output domain of size 2 (single bit)
Our Results: Computational Cost of Privacy

Theorem[**PAJL**23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal for** p, q, and ϵ .

- The channel uses only an output domain of size 2 (single bit)
- Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP

Our Results: Computational Cost of Privacy

Theorem[**PAJL**23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal for** p, q, and ϵ .

- The channel uses only an output domain of size 2 (single bit)
- Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP
- Can be generalized to have a smooth tradeoff:

Our Results: Computational Cost of Privacy

Theorem[**PAJL**23] Given any two distributions p and q on [k] and ϵ , there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal for** p, q, and ϵ .

- The channel uses only an output domain of size 2 (single bit)
- Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP
- Can be generalized to have a smooth tradeoff:
 - A poly $\ell(k^{\ell^2})$ -time algorithm to an ℓ -output channel with sample complexity

$$n_{\mathrm{priv}}^{*}(\epsilon) \cdot \left(1 + \frac{\log n_{\mathrm{priv}}^{*}(\epsilon)}{\ell}\right)$$

Our Results: Computational Cost of Privacy, Generalized

• More broadly, consider the optimization problem

$$\begin{array}{c} \max_{\boldsymbol{\mathcal{F}} \in \mathcal{F}(\epsilon, \ell)} g(\boldsymbol{\mathcal{F}} p, \boldsymbol{\mathcal{F}} q) \\ \mathcal{F}(\epsilon, \ell): \text{ All } \epsilon\text{-LDP channels} \\ \text{ of output size } \ell \end{array}$$

- Examples: *f*-divergences, Renyi Entropy, Wasserstein Norm
 - Maximal separation between p and q after privatization

Our Results: Computational Cost of Privacy, Generalized

• More broadly, consider the optimization problem

$$\begin{array}{c} \max_{\boldsymbol{\mathcal{F}} \in \mathcal{P}(\epsilon, \ell)} g(\boldsymbol{\mathcal{F}} p, \boldsymbol{\mathcal{F}} q) \\ \mathcal{P}(\epsilon, \ell): \text{ All } \epsilon\text{-LDP channels} \\ \text{ of output size } \ell \end{array}$$

- Examples: *f*-divergences, Renyi Entropy, Wasserstein Norm
 - Maximal separation between *p* and *q* after privatization

Recall: maximizing a convex objective is usually hard!

Our Results: Computational Cost of Privacy, Generalized

• More broadly, consider the optimization problem

$$\begin{array}{c} \max_{\boldsymbol{\mathcal{F}} \in \mathcal{P}(\epsilon, \ell)} g(\boldsymbol{\mathcal{F}} p, \boldsymbol{\mathcal{F}} q) \\ g: a (quasi)-convex objective \\ of output size \ell \end{array}$$

- Examples: *f*-divergences, Renyi Entropy, Wasserstein Norm
 - Maximal separation between *p* and *q* after privatization

Recall: maximizing a convex objective is usually hard!

Theorem[PAJL23] There is a poly_{ℓ} (k^{ℓ^2})-time algorithm to find the optimum.

Outline

- Motivation
- Problem Statement
- ► Our Results
- Proof Sketch
 - ► Statistical
 - ► Computational
- ► Conclusion

- Suppose that every channel is fixed to be $\mathbb T$

- Suppose that every channel is fixed to be $\mathbb T$
- Then, each Y_i is either distributed as $\mathbb{T}p$ or as $\mathbb{T}q$

- Suppose that every channel is fixed to be ${\mathbb T}$
- Then, each Y_i is either distributed as $\mathbb{T}p$ or as $\mathbb{T}q$
- We are effectively testing between $\mathbb{T}p$ and $\mathbb{T}q$

- Suppose that every channel is fixed to be ${\mathbb T}$
- Then, each Y_i is either distributed as $\mathbb{T}p$ or as $\mathbb{T}q$
- We are effectively testing between $\mathbb{T}p$ and $\mathbb{T}q$
- Thus, the sample complexity is $\frac{1}{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Suppose that every channel is fixed to be ${\mathbb T}$
- Then, each Y_i is either distributed as $\mathbb{T}p$ or as $\mathbb{T}q$
- We are effectively testing between $\mathbb{T}p$ and $\mathbb{T}q$
- Thus, the sample complexity is $\frac{1}{d_h^2(\mathbb{T}p,\mathbb{T}q)}$
- Leads to optimal choice of \mathbb{T} :

$$\begin{array}{c}
\text{min} \\
\mathbb{T} \in \text{constraints} \quad \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}
\end{array}$$

- Suppose that every channel is fixed to be ${\mathbb T}$
- Then, each Y_i is either distributed as $\mathbb{T}p$ or as $\mathbb{T}q$
- We are effectively testing between $\mathbb{T}p$ and $\mathbb{T}q$
- Thus, the sample complexity is $\frac{1}{d_h^2(\mathbb{T}p,\mathbb{T}q)}$
- Leads to optimal choice of \mathbb{T} :

Statistical cost: Minimum value

$$\min_{\mathbb{T} \in \text{ constraints }} \frac{1}{d_h^2(\mathbb{T}p, \mathbb{T}q)}$$

Computational cost: time to find an approximate minimizer

Outline

- Motivation
- Problem Statement
- Our Results
- ▶ Proof Sketch
 - Statistical
 - ► Computational
- ► Conclusion

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

• Need to understand $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p,\mathbb{T}q)$

- Need to understand $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p,\mathbb{T}q)$
 - Data processing inequality implies $d_h^2(\mathbb{T}p, \mathbb{T}q)$ is smaller than $d_h^2(p, q)$

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Need to understand $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p,\mathbb{T}q)$
 - Data processing inequality implies $d_h^2(\mathbb{T}p,\mathbb{T}q)$ is smaller than $d_h^2(p,q)$
- Privacy requires adding noise, which results in much smaller $d_h^2(\mathbb{T}p,\mathbb{T}q)$

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

• Leads to "Strong data processing inequality"

- Need to understand $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p,\mathbb{T}q)$
 - Data processing inequality implies $d_h^2(\mathbb{T}p,\mathbb{T}q)$ is smaller than $d_h^2(p,q)$
- Privacy requires adding noise, which results in much smaller $d_h^2(\mathbb{T}p,\mathbb{T}q)$

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Leads to "Strong data processing inequality"
- Analyzing the maximum requires knowing the optimal ${\mathbb T}$
 - Non-trivial in general but the binary setting is much easier (randomized-response)

- Need to understand $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p,\mathbb{T}q)$
 - Data processing inequality implies $d_h^2(\mathbb{T}p,\mathbb{T}q)$ is smaller than $d_h^2(p,q)$
- Privacy requires adding noise, which results in much smaller $d_h^2(\mathbb{T}p,\mathbb{T}q)$

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Leads to "Strong data processing inequality"
- Analyzing the maximum requires knowing the optimal ${\mathbb T}$
 - Non-trivial in general but the binary setting is much easier (randomized-response)

Proposition [PAJL23] If p and q are Bernoulli distributions and $\epsilon \gg 1$, then

- Need to understand $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p,\mathbb{T}q)$
 - Data processing inequality implies $d_h^2(\mathbb{T}p,\mathbb{T}q)$ is smaller than $d_h^2(p,q)$
- Privacy requires adding noise, which results in much smaller $d_h^2(\mathbb{T}p,\mathbb{T}q)$

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Leads to "Strong data processing inequality"
- \bullet Analyzing the maximum requires knowing the optimal $\mathbb T$
 - Non-trivial in general but the binary setting is much easier (randomized-response)

Proposition [PAJL23] If *p* and *q* are Bernoulli distributions and $\epsilon \gg 1$, then $\max_{\mathbb{T}:\epsilon-\text{LDP}} d_h^2(\mathbb{T}p, \mathbb{T}q) \asymp \min(e^{\epsilon} d_{\text{TV}}^2(p, q), d_h^2(p, q))$

• The decrease (or the contraction) depends also on the total variation distance

• Suppose, we are interested in a binary private channel $\mathbb T$

- Suppose, we are interested in a binary private channel ${\mathbb T}$
- Can be shown that optimal ${\mathbb T}$ is of the form
 - First, a binary deterministic channel \mathbb{T}'
 - Then, the randomized-response to ensure privacy

- Suppose, we are interested in a binary private channel ${\mathbb T}$
- Can be shown that optimal ${\mathbb T}$ is of the form
 - First, a binary deterministic channel \mathbb{T}'
 - Then, the randomized-response to ensure privacy
- Since the performance of randomized-response depends both on both $d_{\rm TV}$ and d_h^2
 - \mathbb{T}' must try to preserve both d_{TV} and d_h^2

- Suppose, we are interested in a binary private channel ${\mathbb T}$
- Can be shown that optimal ${\mathbb T}$ is of the form
 - First, a binary deterministic channel \mathbb{T}'
 - Then, the randomized-response to ensure privacy
- Since the performance of randomized-response depends both on both $d_{\rm TV}$ and d_h^2
 - \mathbb{T}' must try to preserve both d_{TV} and d_h^2
 - Unfortunately, both can not be preserved always (see example)

- Suppose, we are interested in a binary private channel ${\mathbb T}$
- Can be shown that optimal ${\mathbb T}$ is of the form
 - First, a binary deterministic channel \mathbb{T}'
 - Then, the randomized-response to ensure privacy
- Since the performance of randomized-response depends both on both $d_{\rm TV}$ and d_h^2
 - \mathbb{T}' must try to preserve both d_{TV} and d_h^2
 - Unfortunately, both can not be preserved always (see example)

$$p = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix} \qquad q = \begin{pmatrix} 0.5 - \alpha - \gamma \\ 0.5 - \alpha + \gamma \\ 2\alpha \end{pmatrix}$$

- Suppose, we are interested in a binary private channel ${\mathbb T}$
- Can be shown that optimal ${\mathbb T}$ is of the form
 - First, a binary deterministic channel \mathbb{T}'
 - Then, the randomized-response to ensure privacy
- Since the performance of randomized-response depends both on both $d_{\rm TV}$ and d_h^2
 - \mathbb{T}' must try to preserve both d_{TV} and d_h^2
 - Unfortunately, both can not be preserved always (see example)

$$p = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix} \qquad q = \begin{pmatrix} 0.5 - \alpha - \gamma \\ 0.5 - \alpha + \gamma \\ 2\alpha \end{pmatrix} \qquad Dominant contribution to d_{TV}$$

- Suppose, we are interested in a binary private channel ${\mathbb T}$
- Can be shown that optimal ${\mathbb T}$ is of the form
 - First, a binary deterministic channel \mathbb{T}'
 - Then, the randomized-response to ensure privacy
- Since the performance of randomized-response depends both on both $d_{\rm TV}$ and d_h^2
 - \mathbb{T}' must try to preserve both d_{TV} and d_h^2
 - Unfortunately, both can not be preserved always (see example)

$$p = \begin{pmatrix} 0.5 \\ 0.5 \\ 0 \end{pmatrix} \qquad q = \begin{pmatrix} 0.5 - \alpha - \gamma \\ 0.5 - \alpha + \gamma \\ 2\alpha \end{pmatrix} \qquad Dominant contribution to d_{TV}$$

• If \mathbb{T}' preserves Hellinger divergence, then the total variation decreases, and vice versa

Outline

- Motivation
- Problem Statement
- Our Results
- ▶ Proof Sketch
 - StatisticalComputational
- ► Conclusion

• Recall the original objective

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

• Recall the original objective

 $\min_{\mathbb{T} \in \text{ constraints }} \frac{1}{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

• Let the joint range be $\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) : \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$

• Recall the original objective

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Let the joint range be $\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) : \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$
- By convexity of g and A, the maximum value is attained at T only if (Tp, Tq) is an extreme point of A

• Recall the original objective

 $\min_{\mathbb{T} \in \text{ constraints }} \overline{d_h^2(\mathbb{T}p, \mathbb{T}q)}$

- Let the joint range be $\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) : \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$
- By convexity of g and A, the maximum value is attained at T only if (Tp, Tq) is an extreme point of A

What type of channels \mathbb{T} lead to the extreme points of \mathcal{A} ?

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

• First, a deterministic channel from [k] to $[2\ell^2]$

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

- First, a deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

- First, a deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The Good: Privacy step is independent of k
Extreme Points of the Joint Range: First Attempt

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

- First, a deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The Good: Privacy step is independent of k
- The bad: The number of deterministic channels is ℓ^k

Extreme Points of the Joint Range: First Attempt

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

- First, a deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The Good: Privacy step is independent of k
- The bad: The number of deterministic channels is ℓ^k

Can we further reduce the search space in the first step?

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

- First, a **threshold** deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

- First, a **threshold** deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The number of threshold channels is only polynomial, $k^{\text{poly}(\ell)}$

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

- First, a **threshold** deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The number of threshold channels is only polynomial, $k^{\operatorname{poly}(\ell)}$

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

- First, a **threshold** deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The number of threshold channels is only polynomial, $k^{\text{poly}(\ell)}$

Threshold Channel: A deterministic channel \mathbb{T} is a threshold channel for p and q if \mathbb{T} partitions the input domain by thresholding the likelihood ratios of p and q.

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

- First, a **threshold** deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The number of threshold steps is only polynomial, $k^{\text{poly}(\ell)}$

$$\mathcal{A} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}(\epsilon, \ell)\}$$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ -LDP channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A} , then \mathbb{T} can be decomposed as

- First, a **threshold** deterministic channel from [k] to $[2\ell^2]$
- Then, a (randomized) ϵ -LDP channel from $[2\ell^2]$ to $[\ell]$
- The number of threshold steps is only polynomial, $k^{\text{poly}(\ell)}$

Corollary [PAJL23]: $\operatorname{poly}_{\ell}(k^{\operatorname{poly}(\ell)})$ -time algorithms to maximize convex functions over \mathcal{A} .

Outline

- Motivation
- Problem Statement
- Our Results
- ▶ Proof Sketch
 - Statistical
 - ► Computational
 - Threshold Channels
- Conclusion

• For simplicity, let's focus only on communication constraints

• For simplicity, let's focus only on communication constraints

 $\mathcal{A}_{\text{comm}} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell)\}$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

• For simplicity, let's focus only on communication constraints

 $\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$

Theorem[**PAJL**23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

• For simplicity, let's focus only on communication constraints

 $\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$

Theorem[**PAJL**23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

• # of extreme points of \mathcal{A}_{comm} , k^{ℓ} , is much smaller than that of \mathcal{P}_{comm} , ℓ^k .

• For simplicity, let's focus only on communication constraints

 $\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$

Theorem[**PAJL**23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

• # of extreme points of \mathcal{A}_{comm} , k^{ℓ} , is much smaller than that of \mathcal{P}_{comm} , ℓ^k .

Corollary [PAJL23]: poly(k^{ℓ})-time algorithms to maximize convex functions over \mathcal{A}_{comm} .

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

$$\mathcal{A}_{\text{comm}} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell)\} \qquad \qquad \mathcal{P}_{\text{comm}}(\ell) \colon \text{All channels of output size } \ell$$

$$\mathcal{A}_{\operatorname{comm}} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\operatorname{comm}}(\ell)\} \qquad \qquad \mathcal{P}_{\operatorname{comm}}(\ell) \colon \operatorname{All \ channels \ of \ output \ size \ \ell}$$

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{(\mathbb{T}p, \mathbb{T}q): \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell)\} \qquad \qquad \mathcal{P}_{\text{comm}}(\ell): \text{All channels of output size } \ell$$

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\operatorname{comm}} \coloneqq \{(\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\operatorname{comm}}(\ell)\} \qquad \qquad \mathcal{P}_{\operatorname{comm}}(\ell) \colon \operatorname{All \ channels \ of \ output \ size \ \ell}$$

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

Proof: Suppose \mathbb{T} is not a threshold channel.

• Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q$

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

Theorem[PAJL23] If $(\mathbb{T}p, \mathbb{T}q)$ is an extreme point of \mathcal{A}_{comm} , then \mathbb{T} must be a threshold channel.

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q = \mathbb{T}''q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q = \mathbb{T}''q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)
- But, $\mathbb{T}''p$ puts less mass on \bigcirc than $\mathbb{T}p$

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q = \mathbb{T}''q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)
- But, $\mathbb{T}''p$ puts less mass on \bigcirc than $\mathbb{T}p$
- Fluctuations in opposite directions $\rightarrow (\mathbb{T}p, \mathbb{T}q)$ can't be an extreme point

$$\mathcal{A}_{\text{comm}} \coloneqq \{ (\mathbb{T}p, \mathbb{T}q) \colon \mathbb{T} \in \mathcal{P}_{\text{comm}}(\ell) \}$$

 $\mathcal{P}_{comm}(\ell)$: All channels of output size ℓ

- Can choose the perturbations s.t. $\mathbb{T}'q = \mathbb{T}q = \mathbb{T}''q$
- However, $\mathbb{T}'p$ puts more mass on \bigcirc than $\mathbb{T}p$ (2 has higher likelihood ratio)
- But, $\mathbb{T}''p$ puts less mass on \bigcirc than $\mathbb{T}p$
- Fluctuations in opposite directions $\rightarrow (\mathbb{T}p, \mathbb{T}q)$ can't be an extreme point

Outline

- Motivation
- Problem Statement
- ► Our Results
- Proof Sketch

► Conclusion
- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Algorithms with better runtime dependence on ℓ --- the output size

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Algorithms with better runtime dependence on ℓ --- the output size
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Algorithms with better runtime dependence on ℓ --- the output size
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence
 - M-ary hypothesis testing, optimally

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Algorithms with better runtime dependence on ℓ --- the output size
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence
 - M-ary hypothesis testing, optimally

