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• Let 𝑝 and 𝑞 be two known distributions over {1,… , 𝑘}

• : captures communication and/or privacy

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q
Output:     whether they came from p or q

How do we perform decentralized hypothesis testing?
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1. (Statistical) How much does sample complexity change?

2. (Computational) How to find (near)-optimal channels fast?

𝑛∗ ≔ Sample complexity (no constraints)
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Theorem[PAJL23] There exist ternary distributions 𝑝 and 𝑞 with larger sample complexities.

Theorem[PAJL23] There is an efficient algorithm with nearly-matching upper 
bounds for all distributions.
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What about instance-optimality?
Are there efficient algorithms?
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Can we efficiently find the (near)-optimal channel?
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Theorem[PAJL23] Given any two distributions 𝑝 and 𝑞 on 𝑘 and 𝜖, 

there is a linear-time algorithm to find an 𝜖-LDP channel 
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Theorem[PAJL23] Given any two distributions 𝑝 and 𝑞 on 𝑘 and 𝜖, 

there is a linear-time algorithm to find an 𝜖-LDP channel 

whose sample complexity is near-optimal.

• More broadly, consider the optimization problem

𝑔( 𝑝, 𝑞)max
∈𝒫(𝜖,ℓ)

g: a (quasi)-convex objective

𝒫 𝜖, ℓ : All 𝜖-LDP channels 
of output size ℓ

Theorem[PAJL23] There is a poly 𝑘ℓ
2

-time algorithm to find the optimum.

Recall: maximizing a convex objective is usually hard!
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• Ensure privacy using the randomized response channel (BSC)

• But the number of possible partitions: 2𝑘
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• Say, we want to find the optimal binary channel 𝐓∗

• Can show that optimal 𝐓∗ is of the form:
• First, use a binary deterministic channel 𝐓′ to partition [𝑘] into two sets

• Ensure privacy using the randomized response channel (BSC)

• But the number of possible partitions: 2𝑘

• Can we use 𝑝 and 𝑞 to reduce our search space?

• Our answer: yes!
• Optimal partition must respect the likelihood ratios of 𝑝 and 𝑞

Proof Sketch: Exponential Search to Linear

𝑔(𝐓𝑝, 𝐓𝑞)max
𝐓∈𝒫(𝜖,2)
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• Derived minmax-optimal sample complexities under privacy
• No longer depends only on TV distance and Hellinger

• Computationally and Communication-efficient algorithms

• Open problems:
• Role of interactivity

• Characterization of instance-optimal sample complexity
• Looking beyond TV distance and Hellinger divergence

• M-ary hypothesis testing, optimally

Conclusion and Future Directions

Thank you!
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