

Simple Binary Hypothesis Testing: Locally Private and Communication-Efficient

Ankit Pensia

ITA 2023

Joint Work With

Amir Asadi

Varun Jog

Po-Ling Loh

Outline

Motivation

- Problem Statement
- ► Our Results
 - Statistical
 - ► Computational
- Proof Sketch
- ► Conclusion

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing): Input: i.i.d. samples from either p or q

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

• Arguably, the simplest statistical problem

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

- Arguably, the simplest statistical problem
 - Optimal test: Likelihood ratio test

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

- Arguably, the simplest statistical problem
 - Optimal test: Likelihood ratio test **~**

 X_1 X_2 -- X_n output

Requires access to X_i 's

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

- Arguably, the simplest statistical problem
 - Optimal test: Likelihood ratio test **~**
- Data is distributed these days
 - Limited communication bandwidth
 - Privacy concerns

Requires access to X_i 's

• Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

- Arguably, the simplest statistical problem
 - Optimal test: Likelihood ratio test *****
- Data is distributed these days
 - Limited communication bandwidth
 - Privacy concerns

Requires access to X_i 's

 \succ Requires quantizing/privatizing X_i 's

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Simple Hypothesis Testing):Input:i.i.d. samples from either p or qOutput:whether they came from p or q

• **S**: captures communication and/or privacy

• Let *p* and *q* be two known distributions over {1, ..., *k*}

Problem (Decentralized Simple Hypothesis Testing):Input:modified samples from either p or qOutput:whether they came from p or q

• **S**: captures communication and/or privacy

• Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Decentralized Simple Hypothesis Testing):Input:modified samples from either p or qOutput:whether they came from p or q

• Second contraction and/or privacy

• Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Decentralized Simple Hypothesis Testing):Input:modified samples from either p or qOutput:whether they came from p or q

• 🔊: captures communication and/or privacy

How do we perform decentralized hypothesis testing?

Outline

Motivation

- Problem Statement
- ► Our Results
 - Statistical
 - ► Computational
- Proof Sketch
- ► Conclusion

Privacy Model and Communication Constraints

Privacy Model and Communication Constraints

- Communication-constraints
 - $Y_i \in \{1, \dots, \ell\}$ for some $\ell \ll k$

Privacy Model and Communication Constraints

- Communication-constraints
 - $Y_i \in \{1, \dots, \ell\}$ for some $\ell \ll k$

Today's focus: Privacy (LDP)

Questions of Interest

Questions of Interest

Problem (Decentralized Simple Hypothesis Testing):Input: modified samples from either p or qOutput: whether they came from p or q

Goal: Design the test and channels \mathbb{R} so that the probability of error ≤ 0.1

Questions of Interest

Goal: Design the test and channels \mathbb{R} so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

Questions of Interest

Goal: Design the test and channels \ge so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

 $n^* \coloneqq \text{Sample complexity}$ (no constraints)

 $n^*(\epsilon) \coloneqq \text{Sample complexity with channels satisfying } \epsilon$ -LDP

Questions of Interest

Goal: Design the test and channels \ge so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

 $n^* \coloneqq \text{Sample complexity}$ (no constraints)

 $n^*(\epsilon) \coloneqq \text{Sample complexity with channels satisfying } \epsilon\text{-LDP}$

Questions:

Questions of Interest

Goal: Design the test and channels \ge so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal

- $n^* \coloneqq \text{Sample complexity}$ (no constraints)
- $n^*(\epsilon) \coloneqq \text{Sample complexity with channels satisfying } \epsilon$ -LDP

Questions:

1. (Statistical) How much does sample complexity change?

Questions of Interest

Goal: Design the test and channels \searrow so that the probability of error ≤ 0.1

Sample Complexity: Minimum *n* to achieve above goal

- $n^* \coloneqq \text{Sample complexity}$ (no constraints)
- $n^*(\epsilon) \coloneqq \text{Sample complexity with channels satisfying } \epsilon$ -LDP

Questions:

1. (Statistical) How much does sample complexity change?

2. (Computational) How to find (near)-optimal channels fast?

polynomial in

support size

Outline

- Motivation
- Problem Statement
- Our Results

Statistical

Computational

Proof Sketch

► Conclusion

Statistical Cost of Privacy: Existing Results

• Sample Complexity

Sample Complexity $n^*(\epsilon)$

ϵ

(Privacy parameter)

Statistical Cost of Privacy: Existing Results

Statistical Cost of Privacy: Existing Results

Statistical Cost of Privacy: Existing Results

 d_h^2 : Hellinger divergence

Statistical Cost of Privacy: Existing Results

Statistical Cost of Privacy: Existing Results

Statistical Cost of Privacy: Existing Results

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

Statistical Cost of Privacy: Existing Results

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

Statistical Cost of Privacy: Existing Results

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Theorem[**PAJL**23] There exist ternary distributions *p* and *q* with larger sample complexities.

Outline

- Motivation
- Problem Statement
- ► Our Results
 - Statistical
 - Computational
- Proof Sketch
- ► Conclusion

• Recall we need to map the original data $X_i \rightarrow Y_i$

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel 🔊
 - Once the channel is fixed, perform likelihood ratio test

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No polynomial-time algorithm

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No polynomial-time algorithm
 - [KOV14] gave an exponential-time algorithm

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No polynomial-time algorithm
 - [KOV14] gave an exponential-time algorithm

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a linear-time algorithm to find an ϵ -LDP channel 🔀

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel 🔀

whose sample complexity is **near-optimal**.

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel 🔀

whose sample complexity is **near-optimal**.

• More broadly, consider the optimization problem

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel \ge

whose sample complexity is **near-optimal**.

• More broadly, consider the optimization problem

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal**.

• More broadly, consider the optimization problem

 $\begin{array}{c|c} \mathcal{P}(\epsilon,\ell): \text{All } \epsilon\text{-LDP channels} & \max_{\boldsymbol{\mathcal{V}} \in \mathcal{P}}(\epsilon,\ell) g(\boldsymbol{\mathcal{V}} p, \boldsymbol{\mathcal{V}} q) \\ \text{of output size } \ell & g: a (quasi)\text{-convex objective} \end{array}$

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal**.

• More broadly, consider the optimization problem

 $\begin{array}{c|c} \mathcal{P}(\epsilon,\ell): \text{All } \epsilon\text{-LDP channels} & \max_{\boldsymbol{\mathcal{S}} \in \mathcal{P}}(\epsilon,\ell) g(\boldsymbol{\mathcal{S}} p, \boldsymbol{\mathcal{S}} q) \\ \text{of output size } \ell & g(\boldsymbol{\mathcal{S}} p, \boldsymbol{\mathcal{S}} q) \\ g: a (quasi)\text{-convex objective} \end{array}$

Recall: maximizing a convex objective is usually hard!

Theorem[PAJL23] Given any two distributions p and q on [k] and ϵ ,

there is a **linear-time algorithm** to find an ϵ -LDP channel

whose sample complexity is **near-optimal**.

• More broadly, consider the optimization problem

 $\begin{array}{c|c} \mathcal{P}(\epsilon,\ell): \text{All } \epsilon\text{-LDP channels} & \max_{\boldsymbol{\mathcal{V}} \in \mathcal{P}(\epsilon,\ell)} g(\boldsymbol{\mathcal{V}} p, \boldsymbol{\mathcal{V}} q) \\ \text{of output size } \ell & g(\boldsymbol{\mathcal{V}} p, \boldsymbol{\mathcal{V}} q) \\ g(\boldsymbol{\mathcal{V}} q, \boldsymbol{\mathcal{V}} q) \\ g(\boldsymbol{\mathcal{V} q, \boldsymbol{\mathcal{V}} q) \\ g(\boldsymbol{\mathcal{V}} q, \boldsymbol{\mathcal{V}} q) \\ g(\boldsymbol{\mathcal{V}} q, \boldsymbol{\mathcal{V}} q) \\ g(\boldsymbol{\mathcal{V} q, \boldsymbol{\mathcal{V}} q) \\$

Recall: maximizing a convex objective is usually hard!

Theorem[PAJL23] There is a poly (k^{ℓ^2}) -time algorithm to find the optimum.

Outline

- Motivation
- Problem Statement
- ► Our Results
 - ► Statistical
 - ► Computational
- Proof Sketch
- ► Conclusion

 $\max_{\mathbf{T}\in\mathcal{P}(\epsilon,2)}g(\mathbf{T}p,\mathbf{T}q)$

• Say, we want to find the optimal binary channel \mathbf{T}^*

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal \mathbf{T}^* is of the form:

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal **T**^{*} is of the form:
 - First, use a binary deterministic channel \mathbf{T}' to partition [k] into two sets

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal **T**^{*} is of the form:
 - First, use a binary deterministic channel \mathbf{T}' to partition [k] into two sets

 $\max_{\mathbf{T}\in\mathcal{P}(\epsilon,2)} g(\mathbf{T}p,\mathbf{T}q)$

• Ensure privacy using the randomized response channel (BSC)

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal \mathbf{T}^* is of the form:
 - First, use a binary deterministic channel \mathbf{T}' to partition [k] into two sets

- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: 2^k

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal \mathbf{T}^* is of the form:
 - First, use a binary deterministic channel \mathbf{T}' to partition [k] into two sets

- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: 2^k
- Can we use p and q to reduce our search space?

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal \mathbf{T}^* is of the form:
 - First, use a binary deterministic channel \mathbf{T}' to partition [k] into two sets

- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: 2^k
- Can we use p and q to reduce our search space?
- Our answer: yes!

- Say, we want to find the optimal binary channel \mathbf{T}^*
- Can show that optimal \mathbf{T}^* is of the form:
 - First, use a binary deterministic channel \mathbf{T}' to partition [k] into two sets

- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: 2^k
- Can we use p and q to reduce our search space?
- Our answer: yes!
 - Optimal partition must respect the likelihood ratios of p and q

Outline

- Motivation
- Problem Statement
- ► Our Results
 - Statistical
 - ► Computational
- Proof Sketch
- ► Conclusion

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence
 - M-ary hypothesis testing, optimally

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
 - Role of interactivity
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence
 - M-ary hypothesis testing, optimally

