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* Optimal test: Likelihood ratio test ‘\

* Datais distributed these days

* Limited communication bandwidth
* Privacy concerns
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* Let p and g be two known distributions over {1, ..., k} . @
(Problem (Decentralized Simple Hypothesis Testing): A ﬁ% ﬁ% X
Input: modified samples from either p or g
. Output: whether they came from p or g ) %) ﬁz) o @
* X: captures communication and/or privacy [ outout ]

[ How do we perform decentralized hypothesis testing? ]

[Tsi93] J. Tsitsiklis. Decentralized Detection. 1993
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Y, €{1,..,f}forsome?f Kk

Today’s focus: Privacy (LDP)
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the[probability of error < 0.1

X X
Sample Complexity: Minimum n to achieve above goal ? %} -

n* := Sample complexity (no constraints)

—

output

n*(e€) := Sample complexity with channels satisfying e-LDP

Questions:

1. (Statistical) How much does sample complexity change? n*(e) vs.n"

2. (Computational) How to find (near)-optimal channels fast? | polynomialin
support size
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* Recall we need to map the original data X; — Y; - &
X X X
* Performance depends on the channel ¥
 Once the channel is fixed, perform likelihood ratio test %) %) - ()
* Prior work on finding the optimal channel [ output J

e € K 1:Well-understood

* € > 1: No polynomial-time algorithm
* [KOV14] gave an exponential-time algorithm

Can we efficiently find the (near)-optimal channel?

[KOV14] P. Kairouz, S. Oh, P. Viswanath. Extremal Mechanisms for Local Differential Privacy. 2014
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\
Theorem["AJL23] Given any two distributions p and g on [k] and €,
there is a linear-time algorithm to find an e-LDP channel X
\ whose sample complexity is near-optimal. Y

* More broadly, consider the optimization problem

P (e, £): All -LDP channels max g X p, X Q)
[ of output size £ }\@(6,3)

g: a (quasi)-convex objective

Recall: maximizing a convex objective is usually hard! |

[Theorem[PAJL23] Thereis a poly(kﬁ2 )-time algorithm to find the optimum. ]
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* Say, we want to find the optimal binary channel T~

* Can show that optimal T" is of the form:
* First, use a binary deterministic channel T' to partition [k] into two sets
* Ensure privacy using the randomized response channel (BSC)

e But the number of possible partitions: 2*
* Can we use p and q to reduce our search space?

* OQur answer: yes!
* Optimal partition must respect the likelihood ratios of p and g
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* Derived minmax-optimal sample complexities under privacy
* No longer depends only on TV distance and Hellinger

* Computationally and Communication-efficient algorithms

* Open problems:
* Role of interactivity

* Characterization of instance-optimal sample complexity
* Looking beyond TV distance and Hellinger divergence

* M-ary hypothesis testing, optimally
[ Thank you! }
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