Simple Binary Hypothesis Testing:
Locally Private and Communication-Efficient

Ankit Pensia

ITA 2023
Joint Work With

Amir Asadi Varun Jog Po-Ling Loh
Outline

- Motivation
 - Problem Statement
 - Our Results
 - Statistical
 - Computational
 - Proof Sketch
- Conclusion
• Let p and q be two known distributions over \{1, ..., k\}

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Simple Hypothesis Testing: Centralized

- Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Simple Hypothesis Testing):
- Input: i.i.d. samples from either p or q
- Output: whether they came from p or q
• Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
- Input: i.i.d. samples from either p or q
- Output: whether they came from p or q

• Arguably, the simplest statistical problem
• Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
- Input: i.i.d. samples from either p or q
- Output: whether they came from p or q

• Arguably, the simplest statistical problem
 • Optimal test: Likelihood ratio test
Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
- **Input:** i.i.d. samples from either p or q
- **Output:** whether they came from p or q

Arguably, the simplest statistical problem
- Optimal test: Likelihood ratio test

Requires access to X_i’s
Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
- Input: i.i.d. samples from either p or q
- Output: whether they came from p or q

- Arguably, the simplest statistical problem
 - Optimal test: Likelihood ratio test
- Data is distributed these days
 - Limited communication bandwidth
 - Privacy concerns

Requires access to X_i's
Let p and q be two known distributions over $\{1, \ldots, k\}$.

Problem (Simple Hypothesis Testing):
- **Input:** i.i.d. samples from either p or q
- **Output:** whether they came from p or q

Arguably, the simplest statistical problem
- Optimal test: Likelihood ratio test
- Data is distributed these days
- Limited communication bandwidth
- Privacy concerns

Requires access to X_i’s

Requires quantizing/privatizing X_i’s
Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
- Input: i.i.d. samples from either p or q
- Output: whether they came from p or q
Simple Hypothesis Testing: Decentralized

• Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):

Input: i.i.d. samples from either p or q
Output: whether they came from p or q

• \(\Delta\): captures communication and/or privacy
Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, ..., k\}$

Problem (Decentralized Simple Hypothesis Testing):
- Input: modified samples from either p or q
- Output: whether they came from p or q

- ☑: captures communication and/or privacy
Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing):
- Input: modified samples from either p or q
- Output: whether they came from p or q

- \(\square\): captures communication and/or privacy

Simple Hypothesis Testing: Decentralized

- Let p and q be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing):
- Input: modified samples from either p or q
- Output: whether they came from p or q

- Ξ: captures communication and/or privacy

How do we perform decentralized hypothesis testing?

Outline

- Motivation
- **Problem Statement**
- Our Results
 - Statistical
 - Computational
- Proof Sketch
- Conclusion
Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
 - Everyone releases a randomized version of data
 - Channel \(\epsilon \)-LDP if:
 \[
 \frac{\Pr(Y_i=y|X_i=x)}{\Pr(Y_i=y|X_i=x')} \leq e^\epsilon \quad \text{for all} \quad x, x', y
 \]
 - Non-interactive (private-coin): \(Y_i \)'s are independent

Can’t reliably distinguish between \(x \) and \(x' \) using values of \(Y_i \)
Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
 - Everyone releases a randomized version of data
 - Channel ϵ-LDP if:
 \[
 \frac{\Pr(Y_i = y | X_i = x)}{\Pr(Y_i = y | X_i = x')} \leq e^\epsilon \text{ for all } x, x', y
 \]
 - Non-interactive (private-coin): Y_i’s are independent

- Communication-constraints
 - $Y_i \in \{1, \ldots, \ell\}$ for some $\ell \ll k$
Privacy Model and Communication Constraints

Local Differential Privacy (LDP)
- Everyone releases a randomized version of data.
- Channel \mathcal{C} is ϵ-LDP if:
 \[\frac{\Pr(Y_i = y | X_i = x)}{\Pr(Y_i = y | X_i = x')} \leq e^{\epsilon} \quad \text{for all } x, x', y \]
- Non-interactive (private-coin): Y_i’s are independent.

Communication Constraints
- $Y_i \in \{1, \ldots, \ell\}$ for some $\ell \ll k$

Today’s focus: Privacy (LDP)
Questions of Interest

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q
Output: whether they came from p or q
Questions of Interest

Goal: Design the test and channels so that the probability of error ≤ 0.1.

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q
Output: whether they came from p or q
Questions of Interest

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q
Output: whether they came from p or q
Questions of Interest

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal

$n^* :=$ Sample complexity (no constraints)

$n^*(\epsilon) :=$ Sample complexity with channels satisfying ϵ-LDP

Problem (Decentralized Simple Hypothesis Testing):
- **Input:** modified samples from either p or q
- **Output:** whether they came from p or q
Questions of Interest

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal

$n^* :=$ Sample complexity (no constraints)

$n^*(\epsilon) :=$ Sample complexity with channels satisfying ϵ-LDP

Questions:
Questions of Interest

Goal: Design the test and channels so that the probability of error ≤ 0.1.

Sample Complexity: Minimum n to achieve above goal.

n^* := Sample complexity (no constraints)

$n^*(\epsilon)$:= Sample complexity with channels satisfying ϵ-LDP

Questions:

1. (Statistical) How much does sample complexity change? $n^*(\epsilon)$ vs. n^*.
Questions of Interest

Goal: Design the test and channels so that the probability of error ≤ 0.1

Sample Complexity: Minimum n to achieve above goal

$n^* :=$ Sample complexity (no constraints)

$n^*(\epsilon) :=$ Sample complexity with channels satisfying ϵ-LDP

Questions:

1. (Statistical) How much does sample complexity change?

2. (Computational) How to find (near)-optimal channels fast?
Statistical Cost of Privacy: Existing Results

- Sample Complexity

Sample Complexity $n^*(\epsilon)$

ϵ (Privacy parameter)
Sample Complexity

Sample Complexity

\(n^* (\epsilon) \)

High-privacy

\(\epsilon \)

(Privacy parameter)

No privacy
Statistical Cost of Privacy: Existing Results

- Sample Complexity

\[n^* (\epsilon) \]

\[\frac{1}{d_h^2(p, q)} \]: sample complexity without any constraints

\[d_h^2: \text{Hellinger divergence} \]
\[d_{TV}: \text{Total variation distance} \]

Statistical Cost of Privacy: Existing Results

- Sample Complexity

\[n^*(\epsilon) = \frac{1}{\epsilon^2 d_{TV}^2(p,q)} \]

\(d_{TV}^2\): Total variation distance

\(d_{h}^2\): Hellinger divergence

Statistical Cost of Privacy: Existing Results

- Sample Complexity

\[
\frac{1}{\varepsilon^2 d_{TV}^2(p, q)}
\]

Statistical Cost of Privacy: Existing Results

• Sample Complexity

\[n^*(\epsilon) \]

Sample Complexity without any constraints

Optimal sample complexity in high-privacy

\[\frac{1}{\epsilon^2 d_{TV}^2(p, q)} \]

\[\frac{1}{d_{TV}^2(p, q)} \]

\[d_{TV}^2(p, q) \]: Total variation distance

\[d_{h}^2 \]: Hellinger divergence

Statistical Cost of Privacy: Existing Results

- Sample Complexity

\[
\text{Sample Complexity} \quad n^*(\epsilon) = \frac{1}{\epsilon^2 d^2_{TV}(p, q)}
\]

Optimal sample complexity in high-privacy

\[
\frac{1}{d^2_{TV}(p, q)}
\]

Existing lower bound

\[
\frac{1}{\epsilon^2 d^2_{TV}(p, q)}
\]

\(d^2_n \): Hellinger divergence

\(d_{TV} \): Total variation distance
Sample Complexity

\[n^*(\epsilon) \]

\[\frac{1}{\epsilon^2 d^2_{TV}(p,q)} \]

\[\frac{1}{d^2_{TV}(p,q)} \]

\[\frac{1}{e\epsilon d^2_{TV}(p,q)} \]

High-privacy

No privacy

\(\epsilon \)

(Privacy parameter)

Optimal sample complexity in high-privacy

[PAJL23]: Existing lower bound is tight for Bernoulli distributions

Statistical Cost of Privacy: Existing Results

- Sample Complexity

Sample Complexity \(n^*(\epsilon) \)

Optimal sample complexity in high-privacy

\[\frac{1}{\epsilon^2 d_{TV}^2(p, q)} \]

Existing lower bound

\[e\epsilon \frac{d_{TV}^2(p, q)}{2} \]

[PAJL23]: Existing lower bound is tight for Bernoulli distributions

What about general distributions?

Our Results: Minimax Optimal Sample Complexity

Theorem [PAJL23] There exist ternary distributions p and q with larger sample complexities.
Our Results: Minimax Optimal Sample Complexity

Theorem [PAJL23] There exist ternary distributions p and q with larger sample complexities.
Our Results: Minimax Optimal Sample Complexity

Theorem [PAJL23] There exist ternary distributions p and q with larger sample complexities.

Theorem [PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.
Our Results: Minimax Optimal Sample Complexity

Theorem [PAJL23] There exist ternary distributions p and q with larger sample complexities.

Theorem [PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.
Our Results: Minimax Optimal Sample Complexity

Theorem[PJL23] There exist ternary distributions p and q with larger sample complexities.

Overall, a satisfying story for minimax optimality

Theorem[PJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.
Our Results: Minimax Optimal Sample Complexity

Theorem [PAJL23] There exist ternary distributions p and q with larger sample complexities.

Overall, a satisfying story for minimax optimality

What about instance-optimality? Are there efficient algorithms?

Theorem [PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.
Outline

- Motivation
- Problem Statement
- Our Results
 - Statistical
 - Computational
- Proof Sketch
- Conclusion
Recall we need to map the original data $X_i \rightarrow Y_i$
Computational Cost of Privacy

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
Recall we need to map the original data $X_i \rightarrow Y_i$

Performance depends on the channel

- Once the channel is fixed, perform likelihood ratio test

Computational Cost of Privacy
Computational Cost of Privacy

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
Computational Cost of Privacy

• Recall we need to map the original data $X_i \rightarrow Y_i$
• Performance depends on the channel
 • Once the channel is fixed, perform likelihood ratio test
• Prior work on finding the optimal channel
 • $\epsilon \ll 1$: Well-understood
Computational Cost of Privacy

- Recall we need to map the original data $X_i \rightarrow Y_i$
- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No polynomial-time algorithm
Recall we need to map the original data $X_i \rightarrow Y_i$

- Performance depends on the channel
 - Once the channel is fixed, perform likelihood ratio test

- Prior work on finding the optimal channel
 - $\epsilon \ll 1$: Well-understood
 - $\epsilon \gg 1$: No polynomial-time algorithm
 - [KOV14] gave an exponential-time algorithm

Computational Cost of Privacy

• Recall we need to map the original data $X_i \rightarrow Y_i$

• Performance depends on the channel
 • Once the channel is fixed, perform likelihood ratio test

• Prior work on finding the optimal channel
 • $\epsilon \ll 1$: Well-understood
 • $\epsilon \gg 1$: No polynomial-time algorithm
 • [KOV14] gave an exponential-time algorithm

Can we efficiently find the (near)-optimal channel?

Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, ...
Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel.
Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel whose sample complexity is **near-optimal**.
Our Results: Computational Cost of Privacy

Theorem (PAJL23) Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel whose sample complexity is **near-optimal**.

- More broadly, consider the optimization problem
Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel whose sample complexity is **near-optimal**.

• More broadly, consider the optimization problem

$$g(p, q)$$

g: a (quasi)-convex objective
Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel whose sample complexity is **near-optimal**.

- More broadly, consider the optimization problem

$$
\max_{\epsilon \in \mathcal{P}(\epsilon, \ell)} g(p, q)
$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ

g: a (quasi)-convex objective
Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel whose sample complexity is **near-optimal**.

- More broadly, consider the optimization problem

$$\max_{\epsilon \in \mathcal{P}(\epsilon, \ell)} g(p, q)$$

$\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ

g: a (quasi)-convex objective

Recall: maximizing a convex objective is usually hard!
Our Results: Computational Cost of Privacy

Theorem [PAJL23] Given any two distributions p and q on $[k]$ and ϵ, there is a **linear-time algorithm** to find an ϵ-LDP channel whose sample complexity is **near-optimal**.

- More broadly, consider the optimization problem

 $\max_{\mathcal{P}(\epsilon, \ell)} g(p, q)$

 $\mathcal{P}(\epsilon, \ell)$: All ϵ-LDP channels of output size ℓ

 g: a (quasi)-convex objective

Recall: maximizing a convex objective is usually hard!

Theorem [PAJL23] There is a $\text{poly}(k^{2\ell^2})$-time algorithm to find the optimum.
Outline

- Motivation
- Problem Statement
- Our Results
 - Statistical
 - Computational
 - **Proof Sketch**
- Conclusion
Proof Sketch: Exponential Search to Linear

• Say, we want to find the optimal binary channel T^*

$$\max_{T \in \mathcal{P}(\epsilon, 2)} g(T_p, T_q)$$
Say, we want to find the optimal binary channel \mathbf{T}^*

Can show that optimal \mathbf{T}^* is of the form:

Proof Sketch: Exponential Search to Linear

$$\max_{\mathbf{T} \in \mathcal{P}(\epsilon, 2)} g(\mathbf{T}_p, \mathbf{T}_q)$$
• Say, we want to find the optimal binary channel \mathbf{T}^*
• Can show that optimal \mathbf{T}^* is of the form:
 • First, use a binary deterministic channel \mathbf{T}' to partition $[k]$ into two sets

Proof Sketch: Exponential Search to Linear

$$\max_{\mathbf{T} \in \mathcal{P}(\epsilon,2)} g(\mathbf{T}_p, \mathbf{T}_q)$$
Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel T^*
- Can show that optimal T^* is of the form:
 - First, use a binary deterministic channel T' to partition $[k]$ into two sets
 - Ensure privacy using the randomized response channel (BSC)
• Say, we want to find the optimal binary channel T^*
• Can show that optimal T^* is of the form:
 • First, use a binary deterministic channel T' to partition $[k]$ into two sets
 • Ensure privacy using the randomized response channel (BSC)
• But the number of possible partitions: 2^k
Proof Sketch: Exponential Search to Linear

• Say, we want to find the optimal binary channel T^*
• Can show that optimal T^* is of the form:
 • First, use a binary deterministic channel T' to partition $[k]$ into two sets
 • Ensure privacy using the randomized response channel (BSC)
• But the number of possible partitions: 2^k
• Can we use p and q to reduce our search space?
Proof Sketch: Exponential Search to Linear

• Say, we want to find the optimal binary channel \mathbf{T}^*
• Can show that optimal \mathbf{T}^* is of the form:
 • First, use a binary deterministic channel \mathbf{T}' to partition $[k]$ into two sets
 • Ensure privacy using the randomized response channel (BSC)
• But the number of possible partitions: 2^k
• Can we use p and q to reduce our search space?
• Our answer: yes!
Say, we want to find the optimal binary channel T^*
Can show that optimal T^* is of the form:
 • First, use a binary deterministic channel T' to partition $[k]$ into two sets
 • Ensure privacy using the randomized response channel (BSC)
But the number of possible partitions: 2^k
Can we use p and q to reduce our search space?
Our answer: yes!
 • Optimal partition must respect the likelihood ratios of p and $q
Outline

- Motivation
- Problem Statement
- Our Results
 - Statistical
 - Computational
- Proof Sketch
- Conclusion
Conclusion and Future Directions

• Derived minmax-optimal sample complexities under privacy
 • No longer depends only on TV distance and Hellinger
Conclusion and Future Directions

• Derived minmax-optimal sample complexities under privacy
 • No longer depends only on TV distance and Hellinger
• Computationally and Communication-efficient algorithms
Conclusion and Future Directions

• Derived minmax-optimal sample complexities under privacy
 • No longer depends only on TV distance and Hellinger
• Computationally and Communication-efficient algorithms

• Open problems:
Conclusion and Future Directions

• Derived minmax-optimal sample complexities under privacy
 • No longer depends only on TV distance and Hellinger

• Computationally and Communication-efficient algorithms

• Open problems:
 • Role of interactivity
Conclusion and Future Directions

• Derived minmax-optimal sample complexities under privacy
 • No longer depends only on TV distance and Hellinger
• Computationally and Communication-efficient algorithms

• Open problems:
 • Role of interactivity
 • Characterization of instance-optimal sample complexity
 • Looking beyond TV distance and Hellinger divergence
Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
 - No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms

- Open problems:
 - Role of interactivity
 - Characterization of instance-optimal sample complexity
 - Looking beyond TV distance and Hellinger divergence
 - M-ary hypothesis testing, optimally
Conclusion and Future Directions

• Derived minmax-optimal sample complexities under privacy
 • No longer depends only on TV distance and Hellinger
• Computationally and Communication-efficient algorithms

• Open problems:
 • Role of interactivity
 • Characterization of instance-optimal sample complexity
 • Looking beyond TV distance and Hellinger divergence
 • M-ary hypothesis testing, optimally

Thank you!