Simple Binary Hypothesis Testing: Locally Private and Communication-Efficient

## Ankit Pensia

ITA 2023

## Joint Work With



Amir Asadi


Varun Jog


Po-Ling Loh

## Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
- Conclusion


## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
$X_{1} \quad X_{2}-X_{n}$
Input: i.i.d. samples from either p or q

## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q


## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- Arguably, the simplest statistical problem



## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from $p$ or $q$

- Arguably, the simplest statistical problem

- Optimal test: Likelihood ratio test


## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from $p$ or $q$

- Arguably, the simplest statistical problem

- Optimal test: Likelihood ratio test


## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from $p$ or $q$

- Arguably, the simplest statistical problem

- Optimal test: Likelihood ratio test
- Data is distributed these days
- Limited communication bandwidth
- Privacy concerns


## Simple Hypothesis Testing: Centralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- Arguably, the simplest statistical problem

- Optimal test: Likelihood ratio test

```
Requires access to }\mp@subsup{X}{i}{\prime}\mathrm{ 's
```

```
Requires access to }\mp@subsup{X}{i}{\prime}\mathrm{ 's
```

- Data is distributed these days
- Limited communication bandwidth


## Simple Hypothesis Testing: Decentralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q


## Simple Hypothesis Testing: Decentralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or q
Output: whether they came from p or q

- : captures communication and/or privacy



## Simple Hypothesis Testing: Decentralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing): Input: modified samples from either p or q Output: whether they came from p or q

- : captures communication and/or privacy



## Simple Hypothesis Testing: Decentralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing): Input: modified samples from either p or q Output: whether they came from p or q

- : captures communication and/or privacy



## Simple Hypothesis Testing: Decentralized

- Let $p$ and $q$ be two known distributions over $\{1, \ldots, k\}$

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q Output: whether they came from p or q

- : captures communication and/or privacy


How do we perform decentralized hypothesis testing?

## Outline

- Motivation
-Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
-Conclusion


## Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel is $\epsilon$-LDP if:

Can't reliably distinguish between $x$

$$
\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x \prime\right)} \leq e^{\epsilon} \text { for all } x, x^{\prime}, y
$$ and $x^{\prime}$ using values of $Y_{i}$

- Non-interactive (private-coin): $Y_{i}$ 's are independent



## Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel ${ }^{8}$ is $\epsilon$-LDP if:

Can't reliably distinguish between $x$

$$
\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x^{\prime}\right)} \leq e^{\epsilon} \text { for all } x, x^{\prime}, y
$$ and $x^{\prime}$ using values of $Y_{i}$

- Non-interactive (private-coin): $Y_{i}$ 's are independent

- Communication-constraints
- $Y_{i} \in\{1, \ldots, \ell\}$ for some $\ell \ll k$


## Privacy Model and Communication Constraints

- Local Differential Privacy (LDP)
- Everyone releases a randomized version of data
- Channel $\mathbb{S}^{8}$ is $\epsilon$-LDP if:

Can't reliably distinguish between $x$

$$
\frac{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x\right)}{\mathbb{P}\left(Y_{i}=y \mid X_{i}=x \prime\right)} \leq e^{\epsilon} \text { for all } x, x^{\prime}, y
$$ and $x^{\prime}$ using values of $Y_{i}$

- Non-interactive (private-coin): $Y_{i}$ 's are independent

- Communication-constraints
- $Y_{i} \in\{1, \ldots, \ell\}$ for some $\ell \ll k$

Today's focus: Privacy (LDP)

Problem (Decentralized Simple Hypothesis Testing):
Input: modified samples from either p or q Output: whether they came from p or q
 Input: modified samples from either $p$ or $q$ Output: whether they came from p or q

Goal: Design the test and channels so that the probability of error $\leq 0.1$
 Input: modified samples from either p or q Output: whether they came from $p$ or $q$

Goal: Design the test and channels so that the probability of error $\leq 0.1$

Sample Complexity: Minimum $n$ to achieve above goal
 Input: modified samples from either $p$ or $q$ Output: whether they came from $p$ or $q$

Goal: Design the test and channels so that the probability of error $\leq 0.1$

Sample Complexity: Minimum $n$ to achieve above goal
$n^{*}:=$ Sample complexity (no constraints)
$n^{*}(\epsilon):=$ Sample complexity with channels satisfying $\epsilon$-LDP
 Input: modified samples from either $p$ or $q$ Output: whether they came from $p$ or $q$

Goal: Design the test and channels so that the probability of error $\leq 0.1$

Sample Complexity: Minimum $n$ to achieve above goal
$n^{*}:=$ Sample complexity (no constraints)
$n^{*}(\epsilon):=$ Sample complexity with channels satisfying $\epsilon$-LDP


## Questions:

 Input: modified samples from either $p$ or $q$ Output: whether they came from $p$ or $q$Goal: Design the test and channels so that the probability of error $\leq 0.1$

Sample Complexity: Minimum $n$ to achieve above goal
$n^{*}:=$ Sample complexity (no constraints)
$n^{*}(\epsilon):=$ Sample complexity with channels satisfying $\epsilon$-LDP
Questions:

1. (Statistical) How much does sample complexity change?


Goal: Design the test and channels so that the probability of error $\leq 0.1$

Sample Complexity: Minimum $n$ to achieve above goal
$n^{*}:=$ Sample complexity (no constraints)

$n^{*}(\epsilon):=$ Sample complexity with channels satisfying $\epsilon$-LDP

## Questions:

1. (Statistical) How much does sample complexity change?
$n^{*}(\epsilon)$ vs. $n^{*}$
2. (Computational) How to find (near)-optimal channels fast?
polynomial in support size

## Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
-Conclusion


## Statistical Cost of Privacy: Existing Results

- Sample Complexity



## Statistical Cost of Privacy: Existing Results

- Sample Complexity



## Statistical Cost of Privacy: Existing Results

- Sample Complexity

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.


## Statistical Cost of Privacy: Existing Results

- Sample Complexity

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.


## Statistical Cost of Privacy: Existing Results

## - Sample Complexity


[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

## Statistical Cost of Privacy: Existing Results

## - Sample Complexity


[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.

## Statistical Cost of Privacy: Existing Results

- Sample Complexity

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013. [AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.


## Statistical Cost of Privacy: Existing Results

- Sample Complexity
[PAJL23]: Existing lower bound is tight for Bernoulli distributions

(Privacy parameter)


## Statistical Cost of Privacy: Existing Results

- Sample Complexity
[PAJL23]: Existing lower bound is tight for Bernoulli distributions

What about general distributions?

[DJW13] J. Duchi, M. Wainwright, M.Jordan. Minimax Optimal Procedures for Locally Private Estimation. 2013.
[AZ22] S. Asoodeh, H. Zhang. Contraction of Locally Private Mechanisms. 2022.

## Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions $p$ and $q$ with larger sample complexities.


## Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions $p$ and $q$ with larger sample complexities.


## Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions $p$ and $q$ with larger sample complexities.


Theorem[PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.

## Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions $p$ and $q$ with larger sample complexities.


Theorem[PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.

## Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions $p$ and $q$ with larger sample complexities.


Theorem[PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.

## Our Results: Minimax Optimal Sample Complexity

Theorem[PAJL23] There exist ternary distributions $p$ and $q$ with larger sample complexities.


Theorem[PAJL23] There is an efficient algorithm with nearly-matching upper bounds for all distributions.

## Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
- Conclusion


## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$



## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel



## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test



## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel



## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$ : Well-understood


## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$ : Well-understood
- $\epsilon \gg 1$ : No polynomial-time algorithm


## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$ : Well-understood
- $\epsilon \gg 1$ : No polynomial-time algorithm
- [KOV14] gave an exponential-time algorithm


## Computational Cost of Privacy

- Recall we need to map the original data $X_{i} \rightarrow Y_{i}$
- Performance depends on the channel
- Once the channel is fixed, perform likelihood ratio test
- Prior work on finding the optimal channel

- $\epsilon \ll 1$ : Well-understood
- $\epsilon \gg 1$ : No polynomial-time algorithm
- [KOV14] gave an exponential-time algorithm

Can we efficiently find the (near)-optimal channel?

## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$,

## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel

## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel whose sample complexity is near-optimal.

## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel whose sample complexity is near-optimal.

- More broadly, consider the optimization problem


## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel whose sample complexity is near-optimal.

- More broadly, consider the optimization problem



## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel whose sample complexity is near-optimal.

- More broadly, consider the optimization problem



## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel whose sample complexity is near-optimal.

- More broadly, consider the optimization problem


Recall: maximizing a convex objective is usually hard!

## Our Results: Computational Cost of Privacy

Theorem[PAJL23] Given any two distributions $p$ and $q$ on $[k]$ and $\epsilon$, there is a linear-time algorithm to find an $\epsilon$-LDP channel whose sample complexity is near-optimal.

- More broadly, consider the optimization problem


Recall: maximizing a convex objective is usually hard!
Theorem[PAJL23] There is a poly $\left(k^{\ell^{2}}\right)$-time algorithm to find the optimum.

## Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch
-Conclusion


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:
- First, use a binary deterministic channel $\mathbf{T}^{\prime}$ to partition [ $k$ ] into two sets


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:
- First, use a binary deterministic channel $\mathbf{T}^{\prime}$ to partition $[k]$ into two sets
- Ensure privacy using the randomized response channel (BSC)


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:
- First, use a binary deterministic channel $\mathbf{T}^{\prime}$ to partition $[k]$ into two sets
- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: $2^{k}$


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:
- First, use a binary deterministic channel $\mathbf{T}^{\prime}$ to partition [ $k$ ] into two sets
- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: $2^{k}$
- Can we use $p$ and $q$ to reduce our search space?


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:
- First, use a binary deterministic channel $\mathbf{T}^{\prime}$ to partition [ $k$ ] into two sets
- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: $2^{k}$
- Can we use $p$ and $q$ to reduce our search space?
- Our answer: yes!


## Proof Sketch: Exponential Search to Linear

- Say, we want to find the optimal binary channel $\mathbf{T}^{*}$
- Can show that optimal $\mathbf{T}^{*}$ is of the form:
- First, use a binary deterministic channel $\mathbf{T}^{\prime}$ to partition $[k]$ into two sets
- Ensure privacy using the randomized response channel (BSC)
- But the number of possible partitions: $2^{k}$
- Can we use $p$ and $q$ to reduce our search space?
- Our answer: yes!
- Optimal partition must respect the likelihood ratios of $p$ and $q$


## Outline

- Motivation
- Problem Statement
- Our Results
- Statistical
- Computational
- Proof Sketch


## - Conclusion

## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger


## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms


## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:


## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity


## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Characterization of instance-optimal sample complexity
- Looking beyond TV distance and Hellinger divergence


## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Characterization of instance-optimal sample complexity
- Looking beyond TV distance and Hellinger divergence
- M-ary hypothesis testing, optimally


## Conclusion and Future Directions

- Derived minmax-optimal sample complexities under privacy
- No longer depends only on TV distance and Hellinger
- Computationally and Communication-efficient algorithms
- Open problems:
- Role of interactivity
- Characterization of instance-optimal sample complexity
- Looking beyond TV distance and Hellinger divergence
- M-ary hypothesis testing, optimally

Thank you!

