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Introducing structured robust estimation

So far, we have seen unstructured parameter estimation

Problem statement. (Robust mean estimation)
Let PP be an unknown nice distribution over R? with mean y

Input: corrupted samples from P

Output: i such that ||z — |2 is small w.h.p.
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Introducing structured robust estimation

So far, we have seen unstructured parameter estimation

Problem statement. (Robust mean estimation)
Let PP be an unknown nice distribution over R? with mean y

Input: corrupted samples from P

Output: i such that ||z — |2 is small w.h.p.

Sample complexity: ©(d)

Can we reduce the sample complexity if u is structured?

in this talk: sparsity
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Motivating sparsity

Many data distributions are sparse

> Images in wavelet basis
> Bioinformatics

A classical concept in statistics

> Extra information about the true parameter
> Allows us to get smaller error (alternatively, lower sample complexity)

This talk: Utilizing the structure of sparsity robustly.
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Let P be an unknown nice distribution over R¢ with a k-sparse mean

Input: corrupted samples from P
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Problem statement. (Robust sparse mean estimation)
Let P be an unknown nice distribution over R? with a k-sparse mean f

Input: corrupted samples from P

Output: i such that || — w2 is small w.h.p.

Sample complexity: ©(k log d)
> Huge reduction in sample complexity!

Alas, achieving o(kz) sample complexity is computationally hard
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Our question: efficient robust sparse estimation

Problem statement. (Robust sparse mean estimation)
Let P be an unknown nice distribution over R? with a k-sparse mean f

Input: corrupted samples from P

Output: i such that || — w2 is small w.h.p.

Relaxed goal: Achieving poly(k, log d) sample complexity, efficiently
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Background

> Algorithmic framework
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Suppose the inliers are sampled from A/ (u, I)

(Reducing to one-dimension) ||z — p||2 = sup, (v, & — )
> Equivalent to ensuring accurate estimates in all directions v

Key insight [DKKLMS16; LRV16]: For any direction v,

> The sample mean is accurate if the sample variance is bounded
> Else if the sample variance is large, we can filter the outliers

Algorithmic template: robust (dense) estimation
1. While there exists a direction v with large variance:

14 Filter each point z using v '

2. [i - sample mean

[DKKLMS16] 1. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart. Robust estimators in high... FOCS. 2016
[LRv16] K. A. Lai, A. B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. FOCS. 2016
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Prelude: a path towards robust dense estimation

Algorithmic template: robust (dense) estimation
1. While there exists a direction v with large variance:

14 Filter each point z using v '

2. [i - sample mean

sample mean and covariance should be accurate for clean data
and all large subsets (termed stability)
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Suppose the inliers are sampled from N(u, ), where p is k-sparse

~

(Projections) ||[HardThresh(zi) — 1|2 S SUD,.k-sparse (Vs 1 — 1)

> Only the sparse directions matter

Algorithmic template: robust sparse estimation
1. While there exists a sparse direction v with large variance:
14 Filter points after projecting onto v

2. Return HardThresh(sample mean)
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Next, a path towards robust sparse estimation

Algorithmic template: robust sparse estimation
1. While there exists a sparse direction v with large variance:

141 Filter points after projecting onto v K
2. Return HardThresh(sample mean) intractable!

How to design an efficient subroutine?
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Instead, we design an efficient certificate f(-) such that:

1 [|[Allopr < f(A)and ...
2. f(3 — 1) is small for clean data and its all large subsets (f-stability)
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Towards efficient estimation via relaxed certificates

Instead, we design an efficient certificate f(-) such that:

1 [|[Allopr < f(A)and ...
2. f(3 — 1) is small for clean data and its all large subsets (f-stability)

Algorithmic template: Robust sparse estimation, efficiently
1. While f(Z —T) large:
141 Filter points and update >
2. Return HardThresh(sample mean)

Better certificates —- better algorithms
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Overview

Polynomial-time algorithms
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An approach via semidefinite programs

Efficient algorithms first developed in [BDLS17].

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, A. Singh. Computationally Efficient Robust Sparse Estimation.. COLT. 2017
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SDP-stability. A set .S is SDP-stable w.r.t. y if for all large S” € §

> (Mean) SUPy: k-sparse <U7 Hsr — ﬂ> is small

> (Covariance) ||Xg — Il x, is small
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Theorem: (BDLS17)

Given e-contaminated samples from an isotropic subgaussian distribu-
tion with k-sparse mean p, a polynomial-time algorithm to compute 7i:
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Theorem: (BDLS17)
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Robust sparse mean estimation in polynomial time [BDLS17]

Theorem: (BDLS17)

Given e-contaminated samples from an isotropic subgaussian distribu-
tion with k-sparse mean p, a polynomial-time algorithm to compute 7i:

» (sample complexity) n = O (k*/€?) samples
> (error) [|i — pll2 = O(e)

Near-optimal asymptotic error
Near-optimal computational sample complexity

Runtime: polynomial but existing SDP solvers are impractical

> Current bounds: (d*) time
> Open problem: design faster solvers for this SDP

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, A. Singh. Computationally Efficient Robust Sparse Estimation.. COLT. 2017
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Proof sketch: stability with a small number of samples
X = {M = 0: tr(M) = 1, |[M]l1 < k}
Algorithm: Filtering (with SDP relaxation) ~ 4lxx = stPmen; [(M. A)]
SDP-Stability: For all large subsets S’ of S:

> (Mean)  Sup,.gpare(V; 57 — p) is small
> (Covariance) ||Xg — Il x, is small

Goal: k2 samples
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Algorithm: Filtering (with SDP relaxation) Al = supmex, (M, A)l

SDP-Stability: For all large subsets S’ of S:

> (Covariance) ||Xg — Il x, is small
Goal: k2 samples
Proof sketch (of a weaker bound)

by < 2
S’gg:}l)a(rgen S/HX’“ S SHXk

(M PSDand 0 < Xg < 223)
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Proof sketch: stability with a small number of samples

Xy, o= {M = 0: tx(M) = 1, [|M]}; <k}

Algorithm: Filtering (with SDP relaxation) ~ 4lxx = stPmen; [(M. A)]

SDP-Stability: For all large subsets S’ of S:

> (Covariance) ||Xg — Il x, is small
Goal: k2 samples
Proof sketch (of a weaker bound)

D) < = <14+ ||Zg-1I
S’g}szzil)a(rgen S/HX}“ ~ H SHXk — +H S HXk

triangle inequality
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Proof sketch: stability with a small number of samples

Xy, o= {M = 0: tx(M) = 1, [|M]}; <k}

Algorithm: Filtering (with SDP relaxation) ~ 4lxx = stPmen; [(M. A)]

SDP-Stability: For all large subsets S’ of S:

> (Covariance) ||Xg — Il x, is small
Goal: k2 samples
Proof sketch (of a weaker bound)

D) < = <14+ ||Zg-1
S’g}szzil)a(rgen S/HX}“ ~ H SHXk = +H S HXk

<k X5 = Iloo

Holder's inequality
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Proof sketch: stability with a small number of samples

Xy, o= {M = 0: tx(M) = 1, [|M]}; <k}

Algorithm: Filtering (with SDP relaxation) ~ 4lxx = stPmen; [(M. A)]

SDP-Stability: For all large subsets S’ of S:

> (Covariance) ||Xg — Il x, is small
Goal: k2 samples
Proof sketch (of a weaker bound)

D) < = <14+ ||Zg-1
S’g}szzil)a(rgen S/HX}“ ~ H SHXk = +H S HXk

<k|[Es = Iloo

Hoeffding’s inequality O(l)
and union bound < k ———= [ |

Jn
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Overview

Polynomial-time algorithms

> Some improvements
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I. Heavy-tailed distributions

To apply [BDLS17] to heavy-tailed distributions, we need to ask:

Do heavy-tailed inliers satisfy SDP stability with good sample complexity?
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Fix: clip samples coordinatewise (i.e., |||l < v for v = poly(k))
> clipping-induced bias versus tails
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Do heavy-tailed inliers satisfy SDP stability with good sample complexity?

No! Samples might be aligned with coordinate axes

Fix: clip samples coordinatewise (i.e., ||||cc < v for v = poly(k))

Previous proof: S is stable w.p. 1 — §, if n =~ k? - v* - log(1/4)

Two shortcomings of this result:
> Dependence on k: superquadratic (v) instead of quadratic

> Dependence on §: multiplicative instead of additive

Can we close this gap?
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Heavy-tailed distributions: improved sample complexity

Theorem: [DKLP22]

‘P: k-sparse mean u, bounded covariance, and degree-four* moments.
An efficient algorithm to output i from e-contaminated data: w.p. 1 — 4,

[DKLP22] I. Diakonikolas, D. Kane, J. Lee, A. Pensia. Outlier-Robust Sparse Estimation for Heavy-Tailed. NeurIPS. 2022
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Heavy-tailed distributions: improved sample complexity

Theorem: [DKLP22]

‘P: k-sparse mean u, bounded covariance, and degree-four* moments.
An efficient algorithm to output i from e-contaminated data: w.p. 1 — 4,

2
» (sample complexity) n = O < k” logd ': 1°g(1/5)> samples

> (erron) ||z — pll2 = O(Ve)

Near-optimal asymptotic error*, computational sample complexity*
Algorithm: same SDP as [BDLS17]; with improved probabilistic analysis

Open questions

> removing bounded fourth-moment* condition
> faster runtime

[DKLP22] I. Diakonikolas, D. Kane, J. Lee, A. Pensia. Outlier-Robust Sparse Estimation for Heavy-Tailed. NeurIPS. 2022
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Algorithm works even if inliers contains a large stable subset

Do heavy-tailed (clipped) inliers contain a large stable subset?

Equivalent to the following question:

Let S be asetof ni.i.d. samples from P (heavy-tailed, bdd. coordinates)
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whp, VYMEX,: Py (xTM:r > 1) <01
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Proof sketch of improved sample complexity

Algorithm works even if inliers contains a large stable subset

Do heavy-tailed (clipped) inliers contain a large stable subset?

Equivalent to the following question:

Let S be asetof ni.i.d. samples from P (heavy-tailed, bdd. coordinates)
Does the following hold

whp, VYMEX,: Py (xTMx > 1) <01
!

[holds at the population (n — o0o) by Markov]—J
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Xy ={M>0:tr(M) =1, |M|1 < k}

Proof sketch of improved sample complexity

Algorithm works even if inliers contains a large stable subset

Do heavy-tailed (clipped) inliers contain a large stable subset?

Equivalent to the following question:

Let S be asetof ni.i.d. samples from P (heavy-tailed, bdd. coordinates)
Does the following hold with n ~ k22

whp, VYMEX,: Py (mTM:r > 1) <01
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Rounding analytically sparse PSD matrices to sparse matrices

Let S be asetofni.i.d. samples from P (heavy-tailed, bdd. coordinates)
Does the following hold with n ~ k2?

whp., VMERX,: P, (;JMx > 1) <0.1

Challenge: VC dimension of X}, > k?
Idea [Li18]: relate it to Ag := {B : ||B||m = 1, | Bllo < k?}
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Let S be asetofni.i.d. samples from P (heavy-tailed, bdd. coordinates)
Does the following hold with n ~ k2?

whp., VMERX,: P, (;JMx > 1) <0.1

Challenge: VC dimension of X}, > k?
Idea [Li18]: relate it to Ag := {B : ||B||m = 1, | Bllo < k?}
> (Good) VC dimension of Ag is k? and || - [[x, < || - [ 4,

> But 2" Bz might have large variance (dependent coordinates)
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whp., VMERX,: P, (;JMx > 1) <0.1

Challenge: VC dimension of X}, > k?
Idea [Li18]: relate it to Ag := {B : ||B||m = 1, | Bllo < k?}
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Rounding analytically sparse PSD matrices to sparse matrices

Let S be asetofni.i.d. samples from P (heavy-tailed, bdd. coordinates)
Does the following hold with n ~ k2?

whp., VMERX,: P, <$TMZL‘ > 1) <0.1

Challenge: VC dimension of X}, >> k2
Idea [Li18]: relate it to Ag := {B : |B||r. = 1, ||Bllo < k?}

Fix [DKLP22]: Ay p :={B € Ay : P, p(z" Bz > 1) < 0.1}

Theorem: sparse rounding (worst-case) [DKLP22]

Given M € X}, there is a random matrix Q
» whp,Qec A p
» 2 Mz > 1 for clipped x implies IP’Q(xTQx >1)>04

[Li18] J. Li. Principled Approaches to Robust Machine Learning and Beyond. PhD thesis. 2018
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Suppose the distribution has bounded ¢-th moments; £ > 1
Optimal asymptotic error: O(e! =)

However, for unknown covariance, [BDLS17] gets stuck at Q(/¢)
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Suppose the distribution has bounded ¢-th moments; ¢ > 1
Optimal asymptotic error: O(e!~ )

However, for unknown covariance, [BDLS17] gets stuck at 2(1/¢)

Theorem: [DKKPP22]

Given e-contaminated samples from a distribution P on R% with
k-sparse mean u and bounded t-th moments:
» (lower Pound) Efficient* algorithms need n >> k*(*) samples for
O(e'~7) error
» (upper bound) A polynomial-time algorithm using n = k9(*) /¢2
samples with matching error if moments are certifiably* bounded

[BDLS17] S. Balakrishnan, S. S. Du, J. Li, A. Singh. Computationally Efficient Robust Sparse Estimation.. COLT. 2017
[DKKPP22] I. Diakonikolas, D. Kane, S. Karmalkar, A. Pensia, T. Pittas. Robust Sparse Estimation via SoS. COLT. 2022
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More practical certificates for the sparse operator norm?
We want a practical function f(-):

> [[Allopr < f(A)

> f(X —1I) is bounded for clean data and all large subsets (stability)
Suppose f(A) = supgcp(B,A).

Desirable properties of B:

> sparsity-aware v
> practical to search for B* v
> (For stability) For all B in B, ' Bz has bdd. variance Vv for gaussians

[DKKPS19]: B:={B: |B|r = 1,|B|lo < k?}

> f(A) is a “sparse Frobenius norm”: /5 norm of the largest k2 entries

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019
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A practical algorithm using sparse Frobenius norm

Theorem: [DKKPS19]

Given n e-contaminated samples from N (u, I) with k-sparse mean g,
a practical algorithm to compute i such that w.h.p.,

» (sample complexity) n = O (12—22) samples

> (erron) [ — ulz = B
» (runtime) d? - poly(k,1/e¢)

Near-optimal asymptotic error, computational sample complexity
Open questions:
> Beyond Gaussians? Even, all (isotropic) subgaussian distributions?

> Beyond isotropy? Say, unknown covariance Gaussians

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019
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Subquadratic-time algorithms
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Quest for faster algorithms

Input size: nd, where n is the sample complexity
> Ideal runtime O (nd)

> Possible for dense estimation: [CDG19; DL22; DHL19; CMY20; DKKLT22; DKPP22]

[CDG19] Y. Cheng, I. Diakonikolas, R. Ge. High-Dimensional Robust Mean Estimation in Nearly-Linear Time. SODA. 2019
[DL22] J. Depersin, G. Lecué. Robust Subgaussian Estimation of a Mean Vector in Nearly Linear Time. Ann. Stats. 2022
[DHL19] Y. Dong, S. Hopkins, . Li. Quantum entropy scoring for fast robust mean estimation.. NeurIPS. 2019

[CMY20] Y. Cherapanamjeri, S. Mohanty, M. Yau. List decodable mean estimation in nearly linear time. FOCS. 2020
[DKKLT22] I. Diakonikolas, D. M. Kane, D. Kongsgaard, J. Li, K. Tian. Clustering Mixture Models in ..Linear.. STOC. 2022
[DKPP22] I. Diakonikolas, D. Kane, A. Pensia, T. Pittas. Streaming Algorithms for .. Robust Statistics.. ICML. 2022
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Challenges:
> Analog of power iteration for sparse eigenvectors?

> In fact, existing approaches need explicit 3

A subquadratic-time algorithm for robust sparse estimation?
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A subquadratic-time algorithm

Theorem: [P24]

Given e-contaminated samples from A (u, I) on R with k-sparse p

[Pen24] A. Pensia. A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation. ICML. 2024
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and a natural number q,

[Pen24] A. Pensia. A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation. ICML. 2024



25/30

A subquadratic-time algorithm

Theorem: [P24]

Given e-contaminated samples from A (u, I) on R with k-sparse p
and a natural number g, there is an algorithm to compute /i:

[Pen24] A. Pensia. A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation. ICML. 2024



25/30

A subquadratic-time algorithm

Theorem: [P24]

Given e-contaminated samples from A (u, I) on R with k-sparse p
and a natural number g, there is an algorithm to compute /i:
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Theorem: [P24]

Given e-contaminated samples from A (u, I) on R with k-sparse p
and a natural number g, there is an algorithm to compute /i:

> (error) |7 — pfl2 = O(e)
1.6+1

» (runtime) d - poly(n)

Near-optimal asymptotic error

Subquadratic forany ¢ > 3
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Theorem: [P24]

Given e-contaminated samples from A (u, I) on R with k-sparse p
and a natural number g, there is an algorithm to compute /i:

> (error) |7 — pfl2 = O(e)
d1.6+§

» (runtime) - poly(n)

» (sample complexity) n = poly(k9, 1/€9, log d) samples

Near-optimal asymptotic error

Subquadratic forany ¢ > 3
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A subquadratic-time algorithm

Theorem: [P24]

Given e-contaminated samples from A (u, I) on R with k-sparse p
and a natural number g, there is an algorithm to compute /i:

> (error) |7 — pfl2 = O(e)
d1.6+§

» (runtime) - poly(n)

» (sample complexity) n = poly(k9, 1/€9, log d) samples

Near-optimal asymptotic error

Subquadratic forany ¢ > 3
Open questions:
> k2 sample complexity
> linear time
> a wider family of distributions (same as [DKKPS19])

[Pen24] A. Pensia. A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation. ICML. 2024
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Proof idea: Algorithm blueprint
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2. Return HardThresh(sample mean)
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Proof idea: Algorithm blueprint

Algorithmic template from [DKKPS19].
1. While || 3 — I||p, 42 large:
141 Filter points and update X

2. Return HardThresh(sample mean)

Key challenge: off-diagonal correlated coordinates
H:= {(i,j) i # 37, [Zij| > 1/k}

Strongly correlated coordinates]

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019
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Proof idea: Algorithm blueprint

Algorithmic template from [DKKPS19].
1. While || 3 — I||p, 42 large:
141 Filter points and update X

2. Return HardThresh(sample mean)

Key challenge: off-diagonal correlated coordinates
H = {(i,j) i #J, |3zl >1/k}
First observation: Coordinates in H' are nice

> (B = Dpollp e < VE2 -5 =0(1)
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|Al|gy g2 := £2 norm of largest k2 entries of A

Proof idea: Algorithm blueprint

Algorithmic template from [DKKPS19].
1. While || 3 — I||p, 42 large:
141 Filter points and update X

2. Return HardThresh(sample mean)

Key challenge: off-diagonal correlated coordinates
First observation: Coordinates in HC are nice

> (=D pgellp e < VE2 -1 =0(1)

How to find H in subquadratic time?

[DKKPS19] I. Diakonikolas, D. Kane, S. Karmalkar, E. Price, A. Stewart. Outlier-Robust Sparse Estimation... NeurIPS. 2019
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Input: vectors yi,...,y4 € R";, n<d
a threshold p € (0, 1), a threshold 7 < p

very few, say o(d) out of d? pairs, are T-correlated

Output: all p-correlated pairs (i, j) € [d] x [d]

Naive algorithm: try all possible pairs, runs in d? time

[Val1s] gives an o(d?) algorithm if 7 < p
> runtime ~ d"%7 7 if 7 = poly(p?)

[Val1s] G. Valiant. Finding Correlations in Subquadratic Time,... J. ACM (2015)
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Filtering using fast correlation detection While |3 — Tl 2 large:

Filter outliers

Algorithm outline.

1 H {(,5): %] > o} p=1/k
2. J < {(i,4): [Zi ] > 7} 7= plo0

3. While |H| > poly(k):

> If |J| = o(d):
> Use [Valis] to find H and filter
> Else

> ?777?
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Filter outliers

The complete algorithm.
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3. While |H| > poly(k):
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> Else
> Filter using poly(1/7) coordinates in R



29/30

Conclusion

Today: robust sparse estimation through the lens of mean estimation

What we didn’t discuss?

> Sparsity in other contexts: PCA, linear regression, covariance,. . .
> Privacy
> Information-computation tradeoffs



29/30

Conclusion

Today: robust sparse estimation through the lens of mean estimation

What we didn't discuss?
> Sparsity in other contexts: PCA, linear regression, covariance,. . .

> Privacy
> Information-computation tradeoffs

Open questions:

> Similar progress on sparse PCA, linear regression,

> Custom SDP solvers for { M > 0;tr(M) = 1; | M| < k}
> Relaxing assumptions on data distributions

> Linear-time/Practical algorithms



29/30

Conclusion

Today: robust sparse estimation through the lens of mean estimation

What we didn’t discuss?

> Sparsity in other contexts: PCA, linear regression, covariance,. . .
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Open questions:

> Similar progress on sparse PCA, linear regression,

> Custom SDP solvers for {Af = 0;tr(M) = 1; || M|, < k}
> Relaxing assumptions on data distributions

> Linear-time/Practical algorithms

Happy to chat more
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