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Indirect access to X (can't perform matrix-vector products)

Extensively studied under various notions of restrictions recently
> i.i.d. samples, corrupted samples, correlated samples
> differential privacy, fairness,

However, most works obtain guarantees only for k = 1
> But, many practical applications need £ > 1

Can we generalize these existing techniquesto £ > 1?
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Input: > k€ [d]
> Os.pca, an arbitrary oracle for (approximate) 1-PCA
> M, ad x dPSD matrix, (access through O;_pca)

1. P() < Id (identity projection)
2. Fori € [k]:
21 u; < 01_pcA(PZ‘_1MP1‘_1) (top component in projected space)

2.2 P1 — Pi—l — ’UJZU,T

i (updating the projection)

Output: {ug, ..., ug}

Repeatedly deflates the directions returned by O,_pca
Importantly, can be performed using samples (w/o direct access to M)

A natural but not-well-understood technique
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> Phrased as an open problem in [MM15]
> [LZ15]: makes strong eigengap assumptions
> [AL16]: Studies one particular notion of approximation (defined next)
» However, their focus is on the regime with whitebox/explicit access to
M, and achieves different tradeoffs (more later)

Can we develop a better understanding of deflation?

[MM15] C. Musco, C. Musco. Randomized block krylov methods for stronger and faster approximate SVD. NeurlIPS (2015)
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Approximate £-PCA

Multiple notions of approximation
Inspired by ML/statistics literature, we study two notions:

1. energy-PCA

2. correlation-PCA

Importantly, both are gap-free; no separation between eigenvalues
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An orthonormal matrix U = (uq,...,u) € R¥** is an e-approximate
k-energy-PCA of a PSD matrix M € R4¥4 if

k

ZUTMU,Z >(1-€)> MN(M)

i=1

Maximum amount of energy/variance: Zle Ai(M)
> Achieved when u;'s are leading eigenvectors

Is deflation energy-(PCA)-efficient?
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Our result for energy-PCA

Theorem: [jkLrpT24]

If the deflation algorithm uses e-approximate 1-energy-PCA as O, pca
subroutine, then it outputs an e-approximate k-energy-PCA.

Deflation is lossless for energy approximation!

Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
Three-line proof using induction

k+1

Z'LL;'—MUZ >(1—e¢ <Z A ) + uZHMukH
i=1

+(1—¢€) -\ (k:-deﬂated version of M)

k+1

F(L= ) A (M) = (1= A

v

v
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An orthonormal matrix U € R%* is a (A,I')-approximate k-
correlation-PCA of a PSD matrix M € R¥*4 if

(VU= T, < a,

where V<(=2)Ax is the orthonormal matrix of eigenvectors of M with
eigenvalues less than (1 — I') A.

(Relation with energy PCA) Up to some loss in parameters,
> 1-correlation-PCA = 1-energy-PCA
> k-energy-PCA —> k-correlation-PCA

Our energy-PCA result — deflation performs (lossy) correlation-PCA

Can deflation avoid this parameter loss?
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Suppose O,.pca in the deflation algorithm is a (4, y)-approximate PCA.
Key question: How large can d and -y be while ensuring that deflation
outputs a (A, I')-approximate PCA?’

> [AL6] v = O(T) but § = O (A2T?)

> (Using relation with energy-PCA) § = v = Oy (AT)

> Is there a lossless guarantee? By lossless, we mean § oc A and v o< I

"For the simplicity of this talk, we assume A1 < .
[AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurlPS. 2016
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Our result for correlation-PCA
Suppose O,.pca in the deflation algorithm is a (4, y)-approximate PCA.

Key question: How large can d and -y be while ensuring that deflation
outputs a (A, I')-approximate PCA?’

> Is there a lossless guarantee? By lossless, we mean § oc A and v o< I

Theorem: Informal [jkLppT24]

» (Lossless) If A = O(I'?), then can take § = O (A), v = Ox(I).
» (Lossy) If A = Q(T'?), then deflation can be lossy even for k = 2.

Dependence on k can likely be improved (currently quasipolynomial)

Characterizes the regime of lossless deflation

"For the simplicity of this talk, we assume A1 < .
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Conclusion

We studied blackbox reduction from k-pca to 1-pca
Studied two notions of approximate PCA
> energy-PCA: proved that deflation is lossless

> correlation-PCA: characterized the regime when deflation is lossless

Applied these reductions to get improved algorithms for
outlier-robust, heavy-tailed settings

Open questions:
> Dependence on k in correlation-PCA
> Other notions of approximation

> Further applications of this framework

Thank You!



