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Introducing principal component analysis (PCA)

Problem statement. (k-PCA)
Let D be a distribution on Rd with covariance matrix Σ.

Input: (restricted) sample access to D
Output: (approx.) top-k eigenvectors of Σ.

▶ Ubiquitous in statistical estimation, dimensionality reduction

▶ Indirect access to Σ (can’t perform matrix-vector products)

▶ Extensively studied under various notions of restrictions recently
▷ i.i.d. samples, corrupted samples, correlated samples
▷ differential privacy, fairness,

▶ However, most works obtain guarantees only for k = 1
▷ But, many practical applications need k > 1

Can we generalize these existing techniques to k > 1?
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Introducing deflation: A generic reduction to 1-PCA

Input: ▷ k ∈ [d]
▷ O1-PCA, an arbitrary oracle for (approximate) 1-PCA
▷ M , a d× d PSD matrix, (access throughO1-PCA)

1. P0 ← Id (identity projection)

2. For i ∈ [k]:
2.1 ui ← O1-PCA(Pi−1MPi−1) (top component in projected space)
2.2 Pi ← Pi−1 − uiu

⊤
i (updating the projection)

Output: {u1, . . . , uk}

▶ Repeatedly deflates the directions returned byO1-PCA

▶ Importantly, can be performed using samples (w/o direct access to M)
▶ A natural but not-well-understood technique
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Existing literature on deflation

▶ If the 1-PCA oracle,O1-PCA, is exact, then deflation is exact
▶ Main question: What ifO1-PCA is only approximately correct?

▶ Challenge: How do approximation errors compound?
▶ Relatively few concrete guarantees

▷ Phrased as an open problem in [MM15] MM15
▷ [LZ15]: makes strong eigengap assumptions LZ15
▷ [AL16]: Studies one particular notion of approximation (defined

next)AZL16

▶ However, their focus is on the regime with whitebox/explicit access to
M, and achieves different tradeoffs (more later)

Can we develop a better understanding of deflation?
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Approximate k-PCA

▶ Multiple notions of approximation

▶ Inspired by ML/statistics literature, we study two notions:

1. energy-PCA

2. correlation-PCA

▶ Importantly, both are gap-free; no separation between eigenvalues
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Approximation notion: energy

An orthonormal matrix U = (u1, . . . , uk) ∈ Rd×k is an ϵ-approximate
k-energy-PCA of a PSD matrix M ∈ Rd×d if

k∑
i=1

u⊤i Mui ≥ (1− ϵ)
k∑

i=1

λi(M)

▶ Maximum amount of energy/variance:
∑k

i=1 λi(M)

▷ Achieved when ui’s are leading eigenvectors

Is deflation energy-(PCA)-efficient?



6/10

Approximation notion: energy

An orthonormal matrix U = (u1, . . . , uk) ∈ Rd×k is an ϵ-approximate
k-energy-PCA of a PSD matrix M ∈ Rd×d if

k∑
i=1

u⊤i Mui ≥ (1− ϵ)
k∑

i=1

λi(M)

▶ Maximum amount of energy/variance:
∑k

i=1 λi(M)

▷ Achieved when ui’s are leading eigenvectors

Is deflation energy-(PCA)-efficient?



7/10

Our result for energy-PCA

∑k
i=1 u

⊤
i Mui ≥ (1− ϵ)

∑k
i=1 λi(M)

Theorem: [JKLPPT24]

If the deflation algorithm uses ϵ-approximate 1-energy-PCA as O1-PCA
subroutine, then it outputs an ϵ-approximate k-energy-PCA.

▶ Deflation is lossless for energy approximation!

▶ Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
▶ Three-line proof using induction

k+1∑
i=1

u⊤
i Mui ≥ (1− ϵ)

(
k∑

i=1

λi(M)

)
+ u⊤

k+1Muk+1

≥ . . . + (1− ϵ) · λ1

(
k-deflated version of M

)
≥ . . . + (1− ϵ) · λk+1(M) = (1− ϵ)

k+1∑
i=1

λi(M)
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Approximation notion: correlation
▶ Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix U ∈ Rd×k is a (∆,Γ)-approximate k-
correlation-PCA of a PSD matrix M ∈ Rd×d if

∥∥(V<(1−Γ)λk
)⊤

U
∥∥2
Fr
≤ ∆,

where V<(1−∆)λk is the orthonormal matrix of eigenvectors of M with
eigenvalues less than (1− Γ)λk .

▶ (Relation with energy PCA) Up to some loss in parameters,
▷ 1-correlation-PCA =⇒ 1-energy-PCA
▷ k-energy-PCA =⇒ k-correlation-PCA

▶ Our energy-PCA result =⇒ deflation performs (lossy) correlation-PCA

Can deflation avoid this parameter loss?

∑k
i=1 u

⊤
i Mui ≥ (1− ϵ)

∑k
i=1 λi(M)
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Our result for correlation-PCA

▶ SupposeO1-PCA in the deflation algorithm is a (δ, γ)-approximate PCA.
▶ Key question: How large can δ and γ be while ensuring that deflation

outputs a (∆,Γ)-approximate PCA?1

▷ [AL16] γ = O(Γ) but δ = Ok(∆
2Γ2) AZL16

▷ (Using relation with energy-PCA) δ = γ = Ok(∆Γ)
▷ Is there a lossless guarantee? By lossless, we mean δ ∝ ∆ and γ ∝ Γ

Theorem: Informal [JKLPPT24]

▶ (Lossless) If ∆ = O(Γ2), then can take δ = Θk(∆), γ = Θk(Γ).
▶ (Lossy) If ∆ = Ω(Γ2), then deflation can be lossy even for k = 2.

▶ Dependence on k can likely be improved (currently quasipolynomial)
▶ Characterizes the regime of lossless deflation

1For the simplicity of this talk, we assume λ1 ≍ λk .
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2Γ2)

▷ (Using relation with energy-PCA) δ = γ = Ok(∆Γ)
▷ Is there a lossless guarantee? By lossless, we mean δ ∝ ∆ and γ ∝ Γ

Theorem: Informal [JKLPPT24]

▶ (Lossless) If ∆ = O(Γ2), then can take δ = Θk(∆), γ = Θk(Γ).
▶ (Lossy) If ∆ = Ω(Γ2), then deflation can be lossy even for k = 2.

▶ Dependence on k can likely be improved (currently quasipolynomial)
▶ Characterizes the regime of lossless deflation

1For the simplicity of this talk, we assume λ1 ≍ λk .
[AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016
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Conclusion

▶ We studied blackbox reduction from k-pca to 1-pca

▶ Studied two notions of approximate PCA

▷ energy-PCA: proved that deflation is lossless

▷ correlation-PCA: characterized the regime when deflation is lossless

▶ Applied these reductions to get improved algorithms for
outlier-robust, heavy-tailed settings

▶ Open questions:

▷ Dependence on k in correlation-PCA

▷ Other notions of approximation

▷ Further applications of this framework

Thank You!


