Black-Box k-to-1-PCA Reductions: Theory and Applications

Conference on Learning Theory, 2024

Ankit Pensia

Arun Jambulapati

Syamantak Kumar

Jerry

Li

Shourya Pandey

Kevin Tian

Introducing principal component analysis (PCA)

```
Problem statement. (k-PCA)Let \mathcal{D} be a distribution on \mathbb{R}^d with covariance matrix \Sigma.Input:(restricted) sample access to \mathcal{D}Output:(approx.) top-k eigenvectors of \Sigma.
```

Ubiquitous in statistical estimation, dimensionality reduction

Introducing principal component analysis (PCA)

Problem statement. (k-PCA)		
Let ${\mathcal D}$ be a distribution on ${\mathbb R}^d$ with covariance matrix ${\mathbf \Sigma}.$		
Input:	(restricted) sample access to ${\cal D}$	
Output:	(approx.) top- k eigenvectors of ${f \Sigma}.$	

- > Ubiquitous in statistical estimation, dimensionality reduction
- ▶ Indirect access to Σ (can't perform matrix-vector products)

Introducing principal component analysis (PCA)

Problem statement. (k-PCA)		
Let ${\mathcal D}$ be a distribution on ${\mathbb R}^d$ with covariance matrix ${\mathbf \Sigma}.$		
Input:	(restricted) sample access to ${\cal D}$	
Output:	(approx.) top- k eigenvectors of ${old \Sigma}.$	

- Ubiquitous in statistical estimation, dimensionality reduction
- Indirect access to Σ (can't perform matrix-vector products)
- Extensively studied under various notions of restrictions recently
 - ▷ i.i.d. samples, corrupted samples, correlated samples
 - differential privacy, fairness,

Introducing principal component analysis (PCA)

Problem statement. (k-PCA)		
Let \mathcal{D} be a distribution on \mathbb{R}^a with covariance matrix Σ .		
Input:	(restricted) sample access to ${\cal D}$	
Output:	(approx.) top- k eigenvectors of $\mathbf \Sigma$.	

- Ubiquitous in statistical estimation, dimensionality reduction
- \blacktriangleright Indirect access to Σ (can't perform matrix-vector products)
- Extensively studied under various notions of restrictions recently
 - ▷ i.i.d. samples, corrupted samples, correlated samples
 - b differential privacy, fairness,
- \blacktriangleright However, most works obtain guarantees only for k=1
 - $\,\triangleright\,\,$ But, many practical applications need k>1

Introducing principal component analysis (PCA)

Problem statement. (k-PCA)		
Let \mathcal{D} be a distribution on \mathbb{R}^a with covariance matrix Σ .		
Input:	(restricted) sample access to ${\cal D}$	
Output:	(approx.) top- k eigenvectors of ${old \Sigma}.$	

- Ubiquitous in statistical estimation, dimensionality reduction
- Indirect access to Σ (can't perform matrix-vector products)
- Extensively studied under various notions of restrictions recently
 - ▷ i.i.d. samples, corrupted samples, correlated samples
 - differential privacy, fairness,
- \blacktriangleright However, most works obtain guarantees only for k=1
 - $\,\triangleright\,\,$ But, many practical applications need k>1

Can we generalize these existing techniques to k > 1?

Input: $\triangleright \quad k \in [d]$

- $\triangleright \quad \mathcal{O}_{\texttt{1-PCA}}\text{, an arbitrary oracle for (approximate) 1-PCA}$
- $\triangleright \quad M$, a d imes d PSD matrix, (access through $\mathcal{O}_{ extsf{1-PCA}}$)

Input: $b \quad k \in [d]$ $b \quad \mathcal{O}_{1-PCA}$, an arbitrary oracle for (approximate) 1-PCA $b \quad M$, a $d \times d$ PSD matrix, (access through \mathcal{O}_{1-PCA}) 1. $\mathbf{P}_0 \leftarrow \mathbf{I}_d$ (identity projection) 2. For $i \in [k]$: 2.1 $u_i \leftarrow \mathcal{O}_{1-PCA}(\mathbf{P}_{i-1}\mathbf{MP}_{i-1})$ (top component in projected space) 2.2 $\mathbf{P}_i \leftarrow \mathbf{P}_{i-1} - u_i u_i^{\top}$ (updating the projection)

Repeatedly deflates the directions returned by $\mathcal{O}_{ extsf{1-PCA}}$

Input:	 <i>k</i> ∈ [<i>d</i>] <i>O</i>_{1-PCA}, an arbitrary ora <i>M</i>, a <i>d</i> × <i>d</i> PSD matri 	acle for (approximate) 1-PCA x, (access through $\mathcal{O}_{ extsf{1-PCA}})$
1. $\mathbf{P}_0 \leftarrow$ 2. For $i \in$	$\in \mathbf{I}_d \in [k]:$	(identity projection)
2.1 <i>u</i> 2.2]	$\begin{split} \boldsymbol{\mu}_i &\leftarrow \mathcal{O}_{1\text{-PCA}}(\mathbf{P}_{i-1}\mathbf{M}\mathbf{P}_{i-1})\\ \mathbf{P}_i &\leftarrow \mathbf{P}_{i-1} - \boldsymbol{u}_i\boldsymbol{u}_i^\top \end{split}$	(top component in projected space) (updating the projection)
Output:	$\{u_1,\ldots,u_k\}$	

 $\blacktriangleright\,$ Repeatedly deflates the directions returned by $\mathcal{O}_{\text{1-PCA}}$

Input:	$ig > k \in [d]$ $ig > \mathcal{O}_{1-PCA}$, an arbitrary ora ig > M, a $d imes d$ PSD matrix	tcle for (approximate) $1 ext{-PCA}$ x, (access through $\mathcal{O}_{ ext{1-PCA}})$
1. $\mathbf{P}_0 \leftarrow$ 2. For $i \in$	\mathbf{I}_d	(identity projection)
2.1 u 2.2 F	$\mathbf{P}_{i} \leftarrow \mathcal{O}_{1-\text{PCA}}(\mathbf{P}_{i-1}\mathbf{M}\mathbf{P}_{i-1})$ $\mathbf{P}_{i} \leftarrow \mathbf{P}_{i-1} - u_{i}u_{i}^{\top}$	(top component in projected space) (updating the projection)
Output:	$\{u_1,\ldots,u_k\}$	

- $\blacktriangleright\,$ Repeatedly deflates the directions returned by $\mathcal{O}_{\text{1-PCA}}$
- ▶ Importantly, can be performed using samples (w/o direct access to M)

Input:	$\begin{array}{ll} \triangleright & k \in [d] \\ \triangleright & \mathcal{O}_{\texttt{1-PCA}}, \text{ an arbitrary ora} \\ \triangleright & \boldsymbol{M}, \text{ a } d \times d \text{ PSD matrix} \end{array}$	cle for (approximate) $1 ext{-PCA}$ (access through $\mathcal{O}_{ ext{1-PCA}}$)
1. $\mathbf{P}_0 \leftarrow$	\mathbf{I}_d	(identity projection)
2. For <i>i</i> 6 2.1 <i>u</i> 2.2 I	$ \begin{split} & \in [k]: \\ & u_i \leftarrow \mathcal{O}_{\text{1-PCA}}(\mathbf{P}_{i-1}\mathbf{M}\mathbf{P}_{i-1}) \\ & \mathbf{P}_i \leftarrow \mathbf{P}_{i-1} - u_i u_i^\top \end{split} $	(top component in projected space) (updating the projection)
Output:	$\{u_1,\ldots,u_k\}$	

- \blacktriangleright Repeatedly deflates the directions returned by \mathcal{O}_{1-PCA}
- ▶ Importantly, can be performed using samples (w/o direct access to M)
- A natural but not-well-understood technique

- $\blacktriangleright~$ If the 1-PCA oracle, $\mathcal{O}_{\text{1-PCA}}$ is exact, then deflation is exact
- **Main question:** What if \mathcal{O}_{1-PCA} is only approximately correct?

- \blacktriangleright If the 1-PCA oracle, $\mathcal{O}_{\text{1-PCA}}$ is exact, then deflation is exact
- **Main question:** What if \mathcal{O}_{1-PCA} is only approximately correct?
- Challenge: How do approximation errors compound?

- ▶ If the 1-PCA oracle, \mathcal{O}_{1-PCA} , is exact, then deflation is exact
- **Main question:** What if \mathcal{O}_{1-PCA} is only **approximately correct**?
- Challenge: How do approximation errors compound?
- Relatively few concrete guarantees
 - ▷ Phrased as an open problem in [MM15]

[[]MM15] C. Musco, C. Musco. Randomized block krylov methods for stronger and faster approximate SVD. NeurIPS (2015)

- ▶ If the 1-PCA oracle, \mathcal{O}_{1-PCA} , is exact, then deflation is exact
- ▶ Main question: What if \mathcal{O}_{1-PCA} is only approximately correct?
- Challenge: How do approximation errors compound?
- Relatively few concrete guarantees
 - ▷ Phrased as an open problem in [MM15]
 - ▷ [LZ15]: makes strong eigengap assumptions

[[]MM15] C. Musco, C. Musco. Randomized block krylov methods for stronger and faster approximate SVD. *NeurIPS* (2015) [LZ15] R.-C. Li, L.-H. Zhang. Convergence of block lanczos for eigenvalue clusters. *Numerische Mathematik* (2015)

- ▶ If the 1-PCA oracle, \mathcal{O}_{1-PCA} , is exact, then deflation is exact
- ▶ Main question: What if \mathcal{O}_{1-PCA} is only approximately correct?
- Challenge: How do approximation errors compound?
- Relatively few concrete guarantees
 - ▷ Phrased as an open problem in [MM15]
 - ▷ [LZ15]: makes strong eigengap assumptions
 - ▷ [AL16]: Studies one particular notion of approximation (defined next)

[[]MM15] C. Musco, C. Musco. Randomized block krylov methods for stronger and faster approximate SVD. *NeurIPS* (2015) [LZ15] R.-C. Li, L.-H. Zhang. Convergence of block lanczos for eigenvalue clusters. *Numerische Mathematik* (2015) [AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. *NeurIPS*. 2016

- ▶ If the 1-PCA oracle, \mathcal{O}_{1-PCA} , is exact, then deflation is exact
- ▶ Main question: What if \mathcal{O}_{1-PCA} is only approximately correct?
- Challenge: How do approximation errors compound?
- Relatively few concrete guarantees
 - ▷ Phrased as an open problem in [MM15]
 - ▷ [LZ15]: makes strong eigengap assumptions
 - ▷ [AL16]: Studies one particular notion of approximation (defined next)
 - ► However, their focus is on the regime with whitebox/explicit access to M, and achieves different tradeoffs (more later)

[[]MM15] C. Musco, C. Musco. Randomized block krylov methods for stronger and faster approximate SVD. *NeurIPS* (2015) [LZ15] R.-C. Li, L.-H. Zhang. Convergence of block lanczos for eigenvalue clusters. *Numerische Mathematik* (2015) [AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. *NeurIPS*. 2016

Existing literature on deflation

- ▶ If the 1-PCA oracle, \mathcal{O}_{1-PCA} , is exact, then deflation is exact
- ▶ Main question: What if \mathcal{O}_{1-PCA} is only approximately correct?
- Challenge: How do approximation errors compound?
- Relatively few concrete guarantees
 - ▷ Phrased as an open problem in [MM15]
 - ▷ [LZ15]: makes strong eigengap assumptions
 - ▷ [AL16]: Studies one particular notion of approximation (defined next)
 - ► However, their focus is on the regime with whitebox/explicit access to M, and achieves different tradeoffs (more later)

Can we develop a better understanding of deflation?

[[]MM15] C. Musco, C. Musco. Randomized block krylov methods for stronger and faster approximate SVD. *NeurIPS* (2015) [LZ15] R.-C. Li, L.-H. Zhang. Convergence of block lanczos for eigenvalue clusters. *Numerische Mathematik* (2015) [AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. *NeurIPS*. 2016

Approximate *k*-PCA

- Multiple notions of approximation
- Inspired by ML/statistics literature, we study two notions:
 - 1. energy-PCA
 - 2. correlation-PCA

Approximate *k*-PCA

- Multiple notions of approximation
- Inspired by ML/statistics literature, we study two notions:
 - 1. energy-PCA
 - 2. correlation-PCA
- Importantly, both are gap-free; no separation between eigenvalues

Approximation notion: energy

6/10

An orthonormal matrix $\mathbf{U} = (u_1, \dots, u_k) \in \mathbb{R}^{d \times k}$ is an ϵ -approximate k-energy-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

$$\sum_{i=1}^{k} u_i^{\top} \mathbf{M} u_i \ge (1-\epsilon) \sum_{i=1}^{k} \lambda_i(\mathbf{M})$$

Maximum amount of energy/variance: $\sum_{i=1}^k \lambda_i(\mathbf{M})$

 \triangleright Achieved when u_i 's are leading eigenvectors

Approximation notion: energy

6/10

An orthonormal matrix $\mathbf{U} = (u_1, \dots, u_k) \in \mathbb{R}^{d \times k}$ is an ϵ -approximate k-energy-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

$$\sum_{i=1}^{k} u_i^{\top} \mathbf{M} u_i \ge (1-\epsilon) \sum_{i=1}^{k} \lambda_i(\mathbf{M})$$

Maximum amount of energy/variance: $\sum_{i=1}^k \lambda_i(\mathbf{M})$

 \triangleright Achieved when u_i 's are leading eigenvectors

Is deflation energy-(PCA)-efficient?

Our result for energy-PCA

Theorem: [JKLPPT24]

If the deflation algorithm uses ϵ -approximate 1-energy-PCA as \mathcal{O}_{1-PCA} subroutine, then it outputs an ϵ -approximate k-energy-PCA.

▶ Deflation is *lossless* for energy approximation!

Our result for energy-PCA

Theorem: [JKLPPT24]

- ▶ Deflation is *lossless* for energy approximation!
- > Application: Stronger results for outlier-robust PCA, heavy-tailed PCA

Our result for energy-PCA

Theorem: [JKLPPT24]

- ▶ Deflation is *lossless* for energy approximation!
- ▶ Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
- Three-line proof using induction

$\sum_{i=1}^{k} u_i^{\top} \mathbf{M} u_i \ge (1-\epsilon) \sum_{i=1}^{k} \lambda_i(\mathbf{M})$

Our result for energy-PCA

Theorem: [JKLPPT24]

- Deflation is lossless for energy approximation!
- ▶ Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
- Three-line proof using induction

$$\sum_{i=1}^{k+1} u_i^{\top} \mathbf{M} u_i \ge (1-\epsilon) \left(\sum_{i=1}^k \lambda_i(\mathbf{M}) \right) + u_{k+1}^{\top} \mathbf{M} u_{k+1}$$

$\sum_{i=1}^{k} u_i^{\top} \mathbf{M} u_i \ge (1-\epsilon) \sum_{i=1}^{k} \lambda_i(\mathbf{M})$

Our result for energy-PCA

Theorem: [JKLPPT24]

- Deflation is lossless for energy approximation!
- Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
- Three-line proof using induction

$$\begin{split} \sum_{i=1}^{k+1} u_i^\top \mathbf{M} u_i &\geq (1-\epsilon) \left(\sum_{i=1}^k \lambda_i(\mathbf{M}) \right) + u_{k+1}^\top \mathbf{M} u_{k+1} \\ &\geq \dots + (1-\epsilon) \cdot \lambda_1 \Big(k \text{-deflated version of } \mathbf{M} \Big) \end{split}$$

Our result for energy-PCA

Theorem: [JKLPPT24]

- ▶ Deflation is *lossless* for energy approximation!
- Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
- Three-line proof using induction

$$\begin{split} \sum_{i=1}^{k+1} u_i^\top \mathbf{M} u_i &\geq (1-\epsilon) \left(\sum_{i=1}^k \lambda_i(\mathbf{M}) \right) + u_{k+1}^\top \mathbf{M} u_{k+1} \\ &\geq \dots + (1-\epsilon) \cdot \lambda_1 \Big(k \text{-deflated version of } \mathbf{M} \Big) \end{split}$$

$$\geq \qquad \ldots \qquad + (1-\epsilon) \cdot \lambda_{k+1}(\mathbf{M})$$

Our result for energy-PCA

Theorem: [JKLPPT24]

- ▶ Deflation is *lossless* for energy approximation!
- Application: Stronger results for outlier-robust PCA, heavy-tailed PCA
- Three-line proof using induction

$$\begin{split} \sum_{i=1}^{k+1} u_i^\top \mathbf{M} u_i &\geq (1-\epsilon) \left(\sum_{i=1}^k \lambda_i(\mathbf{M}) \right) + u_{k+1}^\top \mathbf{M} u_{k+1} \\ &\geq \qquad \dots \qquad + (1-\epsilon) \cdot \lambda_1 \Big(k \text{-deflated version of } \mathbf{M} \Big) \\ &\geq \qquad \dots \qquad + (1-\epsilon) \cdot \lambda_{k+1}(\mathbf{M}) = (1-\epsilon) \sum_{i=1}^{k+1} \lambda_i(\mathbf{M}) \end{split}$$

Approximation notion: correlation

Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ is a (Δ, Γ) -approximate k-correlation-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

Approximation notion: correlation

Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ is a (Δ, Γ) -approximate k-correlation-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

$$\left\| \left(\mathbf{V}^{<(1-\Gamma)\lambda_k} \right)^\top \mathbf{U} \right\|_{\mathrm{Fr}}^2 \leq \Delta,$$

where $\mathbf{V}^{<(1-\Delta)\lambda_k}$ is the orthonormal matrix of eigenvectors of \mathbf{M} with eigenvalues less than $(1-\Gamma)\lambda_k$.

 $\sum_{i=1}^{k} u_i^{\top} \mathbf{M} u_i \ge (1-\epsilon) \sum_{i=1}^{k} \lambda_i(\mathbf{M})$

Approximation notion: correlation

Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ is a (Δ, Γ) -approximate k-correlation-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

$$\left\| \left(\mathbf{V}^{<(1-\Gamma)\lambda_k} \right)^\top \mathbf{U} \right\|_{\mathrm{Fr}}^2 \leq \Delta,$$

where $\mathbf{V}^{<(1-\Delta)\lambda_k}$ is the orthonormal matrix of eigenvectors of \mathbf{M} with eigenvalues less than $(1-\Gamma)\lambda_k$.

(Relation with energy PCA) Up to some loss in parameters,

- $\triangleright 1$ -correlation-PCA $\implies 1$ -energy-PCA
- $\triangleright k$ -energy-PCA $\implies k$ -correlation-PCA

Approximation notion: correlation

Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ is a (Δ, Γ) -approximate k-correlation-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

$$\left\| \left(\mathbf{V}^{<(1-\Gamma)\lambda_k} \right)^\top \mathbf{U} \right\|_{\mathrm{Fr}}^2 \leq \Delta,$$

where $\mathbf{V}^{<(1-\Delta)\lambda_k}$ is the orthonormal matrix of eigenvectors of \mathbf{M} with eigenvalues less than $(1-\Gamma)\lambda_k$.

(Relation with energy PCA) Up to some loss in parameters,

- $\triangleright 1$ -correlation-PCA $\implies 1$ -energy-PCA
- $\triangleright k$ -energy-PCA $\implies k$ -correlation-PCA

 \blacktriangleright Our energy-PCA result \Longrightarrow deflation performs (lossy) correlation-PCA

Approximation notion: correlation

Geometric notion: output has low correlation with low eigendirections

An orthonormal matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ is a (Δ, Γ) -approximate k-correlation-PCA of a PSD matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ if

$$\left\| \left(\mathbf{V}^{<(1-\Gamma)\lambda_k} \right)^\top \mathbf{U} \right\|_{\mathrm{Fr}}^2 \leq \Delta,$$

where $\mathbf{V}^{<(1-\Delta)\lambda_k}$ is the orthonormal matrix of eigenvectors of \mathbf{M} with eigenvalues less than $(1-\Gamma)\lambda_k$.

(Relation with energy PCA) Up to some loss in parameters,

- $\triangleright 1$ -correlation-PCA $\implies 1$ -energy-PCA
- $\triangleright k$ -energy-PCA $\implies k$ -correlation-PCA

 \blacktriangleright Our energy-PCA result \Longrightarrow deflation performs (lossy) correlation-PCA

Can deflation avoid this parameter loss?

Our result for correlation-PCA

- $\blacktriangleright~$ Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- ▶ Key question: How large can δ and γ be while ensuring that deflation outputs a (Δ, Γ) -approximate PCA?¹

¹For the simplicity of this talk, we assume $\lambda_1 symp \lambda_k$.

Our result for correlation-PCA

- $\blacktriangleright~$ Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- $\blacktriangleright \ \ \, {\rm Key \ \, question: \ How \ \, large \ can \ \, \delta \ \, and \ \, \gamma \ be \ while \ ensuring \ that \ \, deflation \ \, outputs \ a \ \, (\Delta,\Gamma)\ \, approximate \ \, {\rm PCA?}^1$
 - $\triangleright \; \, {\rm [AL16]} \, \gamma = O(\Gamma) \; {\rm but} \, \delta = O_k(\Delta^2 \Gamma^2)$
 - $\triangleright~$ (Using relation with energy-PCA) $\delta=\gamma=O_k(\Delta\Gamma)$
 - hinspace Is there a lossless guarantee? By lossless, we mean $\delta \propto \Delta$ and $\gamma \propto \Gamma$

¹For the simplicity of this talk, we assume $\lambda_1 \simeq \lambda_k$.

[[]AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016

Our result for correlation-PCA

- \blacktriangleright Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- **Key question:** How large can δ and γ be while ensuring that deflation outputs a (Δ, Γ) -approximate PCA?¹
 - \triangleright [AL16] $\gamma = O(\Gamma)$ but $\delta = O_k(\Delta^2 \Gamma^2)$
 - \triangleright (Using relation with energy-PCA) $\delta = \gamma = O_k(\Delta\Gamma)$
 - hinspace Is there a lossless guarantee? By lossless, we mean $\delta \propto \Delta$ and $\gamma \propto \Gamma$

Theorem: Informal [JKLPPT24]

¹For the simplicity of this talk, we assume $\lambda_1 \asymp \lambda_k$.

[AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016

Our result for correlation-PCA

- \blacktriangleright Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- ▶ Key question: How large can δ and γ be while ensuring that deflation outputs a (Δ, Γ) -approximate PCA?¹
 - \triangleright [AL16] $\gamma = O(\Gamma)$ but $\delta = O_k(\Delta^2\Gamma^2)$
 - \triangleright (Using relation with energy-PCA) $\delta = \gamma = O_k(\Delta\Gamma)$
 - $\triangleright~$ Is there a lossless guarantee? By lossless, we mean $\delta \propto \Delta$ and $\gamma \propto \Gamma$

Theorem: Informal [JKLPPT24]

• (Lossless) If
$$\Delta = O(\Gamma^2)$$
, then can take $\delta = \Theta_k(\Delta)$, $\gamma = \Theta_k(\Gamma)$.

¹For the simplicity of this talk, we assume $\lambda_1 \asymp \lambda_k$.

[AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016

Our result for correlation-PCA

- \blacktriangleright Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- ▶ Key question: How large can δ and γ be while ensuring that deflation outputs a (Δ, Γ) -approximate PCA?¹

 - \triangleright (Using relation with energy-PCA) $\delta = \gamma = O_k(\Delta\Gamma)$
 - $\triangleright~$ Is there a lossless guarantee? By lossless, we mean $\delta \propto \Delta$ and $\gamma \propto \Gamma$

Theorem: Informal [JKLPPT24]

• (Lossless) If
$$\Delta = O(\Gamma^2)$$
, then can take $\delta = \Theta_k(\Delta)$, $\gamma = \Theta_k(\Gamma)$.

Dependence on k can likely be improved (currently quasipolynomial)

¹For the simplicity of this talk, we assume $\lambda_1 \simeq \lambda_k$.

[[]AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016

Our result for correlation-PCA

- \blacktriangleright Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- ▶ Key question: How large can δ and γ be while ensuring that deflation outputs a (Δ, Γ) -approximate PCA?¹
 - \triangleright [AL16] $\gamma = O(\Gamma)$ but $\delta = O_k(\Delta^2\Gamma^2)$
 - \triangleright (Using relation with energy-PCA) $\delta = \gamma = O_k(\Delta\Gamma)$
 - $\triangleright~$ Is there a lossless guarantee? By lossless, we mean $\delta \propto \Delta$ and $\gamma \propto \Gamma$

Theorem: Informal [JKLPPT24]

- ▶ (Lossless) If $\Delta = O(\Gamma^2)$, then can take $\delta = \Theta_k(\Delta)$, $\gamma = \Theta_k(\Gamma)$.
- ▶ (Lossy) If $\Delta = \Omega(\Gamma^2)$, then deflation can be lossy even for k = 2.

Dependence on k can likely be improved (currently quasipolynomial)

¹For the simplicity of this talk, we assume $\lambda_1 \asymp \lambda_k$.

[[]AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016

Our result for correlation-PCA

- \blacktriangleright Suppose $\mathcal{O}_{\text{1-PCA}}$ in the deflation algorithm is a $(\delta,\gamma)\text{-approximate PCA.}$
- ▶ Key question: How large can δ and γ be while ensuring that deflation outputs a (Δ, Γ) -approximate PCA?¹
 - \triangleright [AL16] $\gamma = O(\Gamma)$ but $\delta = O_k(\Delta^2\Gamma^2)$
 - \triangleright (Using relation with energy-PCA) $\delta = \gamma = O_k(\Delta\Gamma)$
 - $\triangleright~$ Is there a lossless guarantee? By lossless, we mean $\delta \propto \Delta$ and $\gamma \propto \Gamma$

Theorem: Informal [JKLPPT24]

- ▶ (Lossless) If $\Delta = O(\Gamma^2)$, then can take $\delta = \Theta_k(\Delta)$, $\gamma = \Theta_k(\Gamma)$.
- ▶ (Lossy) If $\Delta = \Omega(\Gamma^2)$, then deflation can be lossy even for k = 2.
- Dependence on k can likely be improved (currently quasipolynomial)
- Characterizes the regime of lossless deflation

¹For the simplicity of this talk, we assume $\lambda_1 \asymp \lambda_k$.

[[]AL16] Z. Allen Zhu, Y. Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain. NeurIPS. 2016

Conclusion

- \blacktriangleright We studied blackbox reduction from $k\mbox{-}{\rm pca}$ to $1\mbox{-}{\rm pca}$
- Studied two notions of approximate PCA
 - $\triangleright~$ energy-PCA: proved that deflation is lossless
 - ▷ correlation-PCA: characterized the regime when deflation is lossless
- Applied these reductions to get improved algorithms for outlier-robust, heavy-tailed settings
- Open questions:
 - $\triangleright~$ Dependence on k in correlation-PCA
 - ▷ Other notions of approximation
 - ▷ Further applications of this framework

Thank You!