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Let p and g be two known distributions on X.
Input: i.i.d. samples X1, ..., X,, from a distribution 6 € {p, q}
Output: g(le) such that, w.h.p., 0=0

A foundational problem in statistics
> Well-understood in two extreme regimes

(Regime 1) n = 1: Single-sample regime

(Regime 11) n — oo: Asymptotic regime

Can we develop a non-asymptotic understanding?
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Introducing Bayesian formulation

Let p, g be two known distributions. Let the prior v € (0,0.5] and
failure probability & € (0, /4]
> Generate © € {p, ¢} randomly with P(© = p) = «
> Conditioned on © = 6,
Input: > X4q,...,X, are sampled i.i.d. from 0

Output:  6(X1.,) such that P(é(xm) + @) <6

Sample complexity: necessary & sufficient samples n*(p, ¢, «, )

Our goal: characterizing sample complexity
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4l7 Candidate distributions: p, ¢

o e Prior: P(© = p) = «
Existing r

st g eSUItS Conditionally iid samples X1, ..., X,

Desired failure prob. ]P’(é\;é 0) <4

Asymptotics: well-understood Sample complexity: n* (p, g, v, )

> failure probability " =5° e~ ©(n-hel*(p,a))

Note that the Bayesian error exponent does not depend on the actual
value of ; and 75, as long as they are nonzero. Essentially, the effect of
the prior is washed out for large sample sizes. The optimum decision rule

Cover and Thomas, Elements of Information Theory
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> Prediction is true for the uniform prior ©
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o e Prior: P(© = p) = «
Existing r

st g eSUItS Conditionally iid samples X1, ..., X,

Desired failure prob. ]P’(é\;é 0) <4

Asymptotics Sample complexity: n* (p, g, «, §)

??
> Predicts n*(p, ¢, a,d) =~ 1112%2((115?)

Non-asymptotic

log(a/d) . log(1/6)
helz(p,q) < sample complexity < hel2 )

» Hence, prediction is incorrect in general ®
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o e Prior: P(© = p) = «
Existing r

st g eSUItS Conditionally iid samples X1, ..., X,

Desired failure prob. ]P’(é\;é 0) <9
Sample complexity: n* (p, g, «, §)

Non-asymptotic

log(x/6) . log(1/6)
> ————— < sample complexity < ——=
hel*(p,g) = >*"P PR = he(p.g)

Can we tightly characterize the sample complexity?
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A complete characterization of sample complexity
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Proof overview: linear regime of failure probability
Standard argument using TV distance and Hellinger divergence fail

Lower bound (using Fano’s method)

* Initial uncertainty __ hpin (@)
> ont > Information per sample — I(©;X1)
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Alog(1/a)

Suffices to take n = T (p.)
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Proof overview: linear regime of failure probability
Standard argument using TV distance and Hellinger divergence fail

Lower bound (using Fano’s method)

hpin ()

*
> n" 2 fex,)

Upper bound (using Hellinger Tensorizarion)

> Generalized Hellinger divergence, H ) (p, q) =1- ZZ p}fxqg‘,

* Alog(1/a)
> nt < Ha(p,q)

Incomparable bounds @

Our contribution: These bounds are equivalent for a special A ®
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Conclusion

Characterized instance-optimal sample complexity

Open questions

> Weak detection: failure probability § = a(1 — v) andy — 0

> For uniform prior, sample complexity decreases with ~y. Precise scaling?

> For non-uniform prior, may not even decrease! When?
> Optimal constants?
> Quantum hypothesis testing

> M-ary testing (dependence on M)

Thank You!
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Introducing prior-free formulation

Let p, ¢ be two known distributions. Let o, S satisfy0 < a < f <K 1

Input: i.i.d. samples X1, ..., X,, from a distribution 6 € {p, ¢}

R Type-lerror. Py, . o0 (g(Xl:n) + p) <a
Output: 0(X1:):

Type-lierror. Px,  qon (@\(le) # q) <p

Sample complexity: minimum number of samples needed

log(a/B) log(1/5)

Existing results: —5-—~ < sample complexity < —2-—~
§ he12(p7q) — P P V= helz(p,q)

Can we close this gap?
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