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Introducing simple binary hypothesis testing

Let p and q be two known distributions on X .

Input: i.i.d. samples X1, . . . , Xn from a distribution θ ∈ {p, q}

Output: θ̂(X1:n) such that, w.h.p., θ̂ = θ

▶ A foundational problem in statistics
▷ Well-understood in two extreme regimes

▶ (Regime I) n = 1: Single-sample regime

▶ (Regime II) n → ∞: Asymptotic regime

Can we develop a non-asymptotic understanding?
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Introducing Bayesian formulation

Let p, q be two known distributions.

Let the prior α ∈ (0, 0.5] and
failure probability δ ∈ (0, α/4]

▷ Generate Θ ∈ {p, q} randomly with P(Θ = p) = α

▷ Conditioned on Θ = θ,

Input: ▷ X1, . . . , Xn are sampled i.i.d. from θ

Output:

θ̂(X1:n) such that P
(
θ̂(X1:n) ̸= Θ

)
≤ δ

▶ Sample complexity: necessary & sufficient samples

n⋆(p, q, α, δ)

Our goal: characterizing sample complexity
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Existing results

Candidate distributions: p, q

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

▶ Asymptotics

▷ failure probability n→∞→ e−Θ(n·hel2(p,q))

Cover and Thomas, Elements of Information Theory

▷ Predicts n⋆(p, q, α, δ)
??
≈ log(1/δ)

hel2(p,q)

▶ Independent of prior, symmetric in p and q

▶ Non-asymptotic

▷ Prediction is true for the uniform prior ,

▷ More generally,

log(α/δ)

hel2(p,q)
≤ sample complexity ≤

log(1/δ)

hel2(p,q)

▶ Exists cases where inequalities are sharp
▶ Hence, prediction is incorrect in general /

Can we tightly characterize the sample complexity?
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Our results

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

Theorem: [PJL24]

Let p and q be two distributions with TV(p, q) ≤ 0.5.
Let the prior be α ∈ (0, 0.5] and failure probability δ ≤ α/4. Then

n⋆(p, q, α, δ) ≍



hbin(α)
I(Θ;X1)

, δ ∈ [ α
100 ,

α
4 )

log(α/δ) · n⋆(p, q, α′, α′/8) δ ∈ (α2, α
100 ]

log(1/δ)

hel2(p,q)
δ ≤ α2

α′ := α
1

log(α/δ)

A complete characterization of sample complexity



5/7

Our results

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

Theorem: [PJL24]

Let p and q be two distributions with TV(p, q) ≤ 0.5.
Let the prior be α ∈ (0, 0.5] and failure probability δ ≤ α/4. Then

n⋆(p, q, α, δ) ≍



hbin(α)
I(Θ;X1)

, δ ∈ [ α
100 ,

α
4 )

log(α/δ) · n⋆(p, q, α′, α′/8) δ ∈ (α2, α
100 ]

log(1/δ)

hel2(p,q)
δ ≤ α2

α′ := α
1

log(α/δ)

A complete characterization of sample complexity



5/7

Our results

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

Theorem: [PJL24]

Let p and q be two distributions with TV(p, q) ≤ 0.5.
Let the prior be α ∈ (0, 0.5] and failure probability δ ≤ α/4. Then

n⋆(p, q, α, δ) ≍



hbin(α)
I(Θ;X1)

, δ ∈ [ α
100 ,

α
4 )

log(α/δ) · n⋆(p, q, α′, α′/8) δ ∈ (α2, α
100 ]

log(1/δ)

hel2(p,q)
δ ≤ α2

α′ := α
1

log(α/δ)

A complete characterization of sample complexity



5/7

Our results

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

Theorem: [PJL24]

Let p and q be two distributions with TV(p, q) ≤ 0.5.
Let the prior be α ∈ (0, 0.5] and failure probability δ ≤ α/4. Then

n⋆(p, q, α, δ) ≍



hbin(α)
I(Θ;X1)

, δ ∈ [ α
100 ,

α
4 )

log(α/δ) · n⋆(p, q, α′, α′/8) δ ∈ (α2, α
100 ]

log(1/δ)

hel2(p,q)
δ ≤ α2

α′ := α
1

log(α/δ)

A complete characterization of sample complexity



5/7

Our results

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

Theorem: [PJL24]

Let p and q be two distributions with TV(p, q) ≤ 0.5.
Let the prior be α ∈ (0, 0.5] and failure probability δ ≤ α/4. Then

n⋆(p, q, α, δ) ≍



hbin(α)
I(Θ;X1)

, δ ∈ [ α
100 ,

α
4 )

log(α/δ) · n⋆(p, q, α′, α′/8) δ ∈ (α2, α
100 ]

log(1/δ)

hel2(p,q)
δ ≤ α2

α′ := α
1

log(α/δ)

A complete characterization of sample complexity



5/7

Our results

Prior: P(Θ = p) = α

Conditionally iid samples X1, . . . , Xn

Desired failure prob. P(θ̂ ̸= Θ) ≤ δ

Sample complexity: n∗(p, q, α, δ)

Theorem: [PJL24]

Let p and q be two distributions with TV(p, q) ≤ 0.5.
Let the prior be α ∈ (0, 0.5] and failure probability δ ≤ α/4. Then

n⋆(p, q, α, δ) ≍



hbin(α)
I(Θ;X1)

, δ ∈ [ α
100 ,

α
4 )

log(α/δ) · n⋆(p, q, α′, α′/8) δ ∈ (α2, α
100 ]

log(1/δ)

hel2(p,q)
δ ≤ α2

α′ := α
1

log(α/δ)

A complete characterization of sample complexity



6/7

Proof overview: linear regime of failure probability

▶ Standard argument using TV distance and Hellinger divergence fail

▶ Lower bound (using Fano’s method)

▷ n⋆ ≥ Initial uncertainty
Information per sample = hbin(α)

I(Θ;X1)

▶ Upper bound (using Hellinger Tensorizarion)

▷ Generalized Hellinger divergence, Hλ(p, q) := 1−
∑

i p
1−λ
i qλi ,

FailureProb =
∑

x1,...,xn

min
(
αp (x1:n) , (1− α)q (x1:n)

)

▷ n⋆ ≤ λ log(1/α)
Hλ(p,q)

▶ Incomparable bounds /

▶ Our contribution: These bounds are equivalent for a special λ,

≤ α1−λ
∑

x1,...,xn
p(x1:n)

1−λq(x1:n)
λ

= α1−λ(1−Hλ(p
⊗n, q⊗n))

= α1−λ (1−Hλ(p, q))
n ???

≤ α/4

Suffices to take n = λ log(1/α)
Hλ(p,q)
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Conclusion

▶ Characterized instance-optimal sample complexity

▶ Open questions

▷ Weak detection: failure probability δ = α(1− γ) and γ → 0

▷ For uniform prior, sample complexity decreases with γ. Precise scaling?

▷ For non-uniform prior, may not even decrease! When?

▷ Optimal constants?

▷ Quantum hypothesis testing

▷ M -ary testing (dependence on M )

Thank You!
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Introducing prior-free formulation

Let p, q be two known distributions. Let α, β satisfy 0 ≤ α ≤ β ≪ 1

Input: i.i.d. samples X1, . . . , Xn from a distribution θ ∈ {p, q}

Output: θ̂(X1:n):
Type-I error. PX1:n∼p⊗n

(
θ̂(X1:n) ̸= p

)
≤ α

Type-II error. PX1:n∼q⊗n

(
θ̂(X1:n) ̸= q

)
≤ β

▶ Sample complexity: minimum number of samples needed

▶ Existing results:
log(α/β)

hel2(p,q)
≤ sample complexity ≤ log(1/β)

hel2(p,q)

Can we close this gap?
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