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Motivation: distributional assumptions

Generic estimation problem. Let P be a family of distributions over Rd

and θ∗ : P → Y be the target parameter.

Input: samples from (unknown) Q ∈ P

Output: θ̂ such that distance
(
θ̂, θ∗(Q)

)
is small w.h.p.

As P gets nicer (more structured),

▶ the information-theoretic optimal error gets smaller

▶ unfortunately, algorithmic guarantees often do not improve...

unless
the niceness assumption on P is algorithmically tractable

Understanding “niceness” versus “tractable niceness”
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Motivation: moment bounds

▶ To arrive at the right notion of “niceness”, we note that . . .

▶ . . . the error is governed by the size of moments of linear projections

For all unit vectors v ∈ Rd : EX [|⟨v,X − µ⟩|p] ≤ Size(p)

▶ Thus, the right notion of niceness is captured by moment bounds of X

▷ Assuming X is gaussian is unrealistic

▷ But assuming that the moments of X are smaller than those of a
gaussian is both more realistic and often sufficient.
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Motivation: subgaussianity versus gaussianity

Definition. A distributionX overRd is subgaussian if its moments grow
slower than those of a gaussian. That is,

For all v ∈ Rd and even p:

▶ Equivalently, P (⟨v,X − µ⟩ > t) ≪ exp(−t2)

▶ Thus, we relax the unrealistic gaussianity assumption

, while keeping
the same information-theoretic optimal error

▶ However, existing computationally-efficient algorithms seem unable
to use subgaussianity, incurring large error

▷ Even though they are able to use gaussianity

Algorithmically tractable notion of subgaussianity?

E [⟨v,X − µ⟩p] ≤ EG∼N (0,Id)[⟨v,G⟩p]√
pp∥v∥p2
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Motivation: “certifiable” subgaussianity

Definition. X is certifiably-subgaussian if its moments grow slower
than those of a Gaussian AND are certifiable by a sum-of-squares proof.

That is, for all even p:

√
pp∥v∥p2 − E [⟨v,X − µ⟩p] =

∑
i

q2i (v)

for some polynomials q1(·), . . . ,

Proposed in [KSS18; HL18] and hugely influential since then

[KSS18] P. K. Kothari, J. Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018

[HL18] S. B. Hopkins, J. Li. Mixture Models, Robustness, and Sum of Squares Proofs. STOC. 2018

▶ Leads to computationally-efficient (SDP-based) algorithms

▷ robust estimation (mean, covariance, regression), clustering, privacy

Which distributions are certifiably subgaussian anyway?
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Prior work: certifiable subgaussianity vs. subgaussianity

▶ Known sufficient conditions for certifiability are rather strong

▷ Rotational invariance, or
▷ Independent coordinates, or
▷ Log-Sobolev Distributions (more generally, Poincare) [KSS18], or

[KSS18] P. K. Kothari, J. Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018

▷ Simple transformations thereof (simple within SoS)

▶ However, many subgaussians do not satisfy these sufficient conditions

▶ A plausible belief was that there might be some subgaussian
distributions that are not certifiably subgaussian

▷ Indeed, there is a huge gap between bounded & certifiably bounded

▷ Under SSEH, there exist distributions that have bounded
1000-moments, but do not have certifiably-bounded 4-th moments [HL19]

Can we characterize certifiable subgaussianity?

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019
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Our result: certifiability of subgaussian distributions

Theorem: [DHPT24]

For all d ∈ N, subgaussian distributions X on Rd, and even p ∈ N,

(C
√
p)p∥v∥p2 − EX [⟨v,X − µ⟩p]

is a sum of square polynomials.

▶ Hence, all subgaussian distributions are certifiably so (upto an absolute constant C)

▶ New algorithmic implications for subgaussian data:
▷ Robust statistics (next slide)

▷ Clustering and mixture models
▷ Sparse PCA, Distortion of a subspace, Hypercontractivity, . . .
▷ Likely, more in the future

▶ Evidence of computational hardness for gaussian data certification
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Our result: new algorithmic guarantees for robust statistics

Robust Estimation Task
Inlier

Distribution

Information-
theoretic

Error

Previous Best
Guarantee in

Polynomial Time
New Guarantees

Mean estimation:
Euclidean norm subgaussian Θ̃(ϵ)

√
ϵ ϵ1−1/m

List-decodable
mean estimation subgaussian Θ̃(ϵ)

√
1

1−ϵ

(
1

1−ϵ

)−Ω( 1
m

)

Mixture models:
Mixture of k
∆-separated
components

each component
is subgaussian ∆ ≳

√
log k ∆ ≳ kΩ(1) ∆ ≳ kO( 1

m )

Mean estimation:
Mahalanobis norm

hypercontractive
subgaussian Θ̃(ϵ)

No general
algorithm ϵ1−1/m

Covariance estimation:
Relative spectral norm

hypercontractive
subgaussian Θ̃(ϵ)

No general
algorithm ϵ1−2/m

Linear regression:
Arbitrary noise

hypercontractive
subgaussian Θ̃(ϵ)

No general
algorithm ϵ1−

2
m
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Proof Sketch

▶ (SoS Duality) Equivalent to showing

▶ (Ghost samples & empirical process)

▷ Control supf∈F
1
n

∑
i f(Xi), where F :=

{
x 7→ Ẽ[⟨v,Xi⟩p]

Ẽ[∥v∥p]
: Ẽ is degree-p

}

▶ (Generic Chaining) For any linear function class Flin

E
[

sup
(f1,...,fn)∈Flin

1
n

n∑
i=1

fi(Xi)
]
≲ E

[
sup

(f1,...,fn)∈Flin

1
n

n∑
i=1

fi(Gi)
]

▷ Sadly, our F is nonlinear (subset of degree-p polynomials)

▶ (Linearization) Luckily, Ẽ[
∑

i⟨v,Xi⟩p] has a linear-ish formualation

▷ Just like
∑

i y
p
i = ∥y∥pp = supv∈Bq

⟨v, y⟩p by Hölder’s inequality

▶ Duality+Linearization+Chaining → Proof

sup
Ẽ:degree-p

Ẽv [EX [⟨v,X⟩p]]
Ẽ[∥v∥p]

≤ small

E
[

sup
Ẽ:degree-p

Ẽv [
1
n

∑n
i=1⟨v,Xi⟩p]

Ẽ[∥v∥p]

]
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Ẽ[∥v∥p]

]



12/14

Proof Sketch

▶ (SoS Duality) Equivalent to showing

▶ (Ghost samples & empirical process)

▷ Control supf∈F
1
n

∑
i f(Xi), where F :=

{
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Ẽ[∥v∥p]

]



12/14

Proof Sketch

▶ (SoS Duality) Equivalent to showing

▶ (Ghost samples & empirical process)

▷ Control supf∈F
1
n

∑
i f(Xi), where F :=

{
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Ẽv [EX [⟨v,X⟩p]]
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Conclusion

▶ We showed that all subgaussian distributions are certifiably so

▶ Algorithmic implications (both upper and lower bounds)

▶ Many open problems:

▷ As a starting point, what about subexponential distributions?

▶ Generic chaining does not apply as is

▷ Can we characterize the penalty of certifiably bounded moments?

▶ Huge gaps between lower (SSEH-based hardness) & upper bounds

▷ Can we develop faster algorithms without solving large SDPs?

Thank you and happy to chat more!
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