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Motivation: distributional assumptions

Generic estimation problem. Let P be a family of distributions over R¢
and 8* : P — ) be the target parameter.

Input: samples from (unknown) Q € P

Output: 0 such that distance (5, 0*(Q)) is small w.h.p.
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Motivation: distributional assumptions

Generic estimation problem. Let P be a family of distributions over R¢
and 0* : P — ) be the target parameter.

Input: samples from (unknown) Q € P

Output: 0 such that distance ((/9\, 0*(Q)) is small w.h.p.

As P gets nicer (more structured),

the information-theoretic optimal error gets smaller

unfortunately, algorithmic guarantees often do not improve... unless
the niceness assumption on P is algorithmically tractable

Understanding “niceness” versus “tractable niceness”
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Motivation: moment bounds

To arrive at the right notion of “niceness”, we note that . . .

... the error is governed by the size of moments of linear projections
For all unit vectors v € R?:  Ex [|(v, X — p)|P] < Size(p)

Thus, the right notion of niceness is captured by moment bounds of X
> Assuming X is gaussian is unrealistic

> But assuming that the moments of X are smaller than those of a
gaussian is both more realistic and often sufficient.
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Motivation: subgaussianity versus gaussianity

Definition. A distribution X over R? is subgaussian if its moments grow
slower than those of a gaussian. That is,

Forallv € R% and even p: E[(v, X — p)?] < Egn(0,1,)[(v, G)P]

Equivalently, P ((v, X — p1) > t) < exp(—t2)
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Definition. A distribution X over R is subgaussian if its moments grow
slower than those of a gaussian. That is,

Forallv € R% and even p: E [(v, X — u)?] < \/p"|jv]|}

Equivalently, P ((v, X — p1) > t) < exp(—t2)

Thus, we relax the unrealistic gaussianity assumption, while keeping
the same information-theoretic optimal error

However, existing computationally-efficient algorithms seem unable
to use subgaussianity, incurring large error

> Even though they are able to use gaussianity

Algorithmically tractable notion of subgaussianity?
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Motivation: “certifiable” subgaussianity

Definition. X is certifiably-subgaussian if its moments grow slower
than those of a Gaussian AND are certifiable by a sum-of-squares proof.
That is, for all even p:

VPP Il = E[{v, X = p)"] = ZQ?(U)

for some polynomials ¢1 (), ...,

Proposed in [KSS18; HL18] and hugely influential since then

Leads to computationally-efficient (SDP-based) algorithms

> robust estimation (mean, covariance, regression), clustering, privacy

Which distributions are certifiably subgaussian anyway?

[KSS18] P. K. Kothari, ). Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018
[HL18] S. B. Hopkins, J. Li. Mixture Models, Robustness, and Sum of Squares Proofs. STOC. 2018
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Prior work: certifiable subgaussianity vs. subgaussianity

Known sufficient conditions for certifiability are rather strong

However, many subgaussians do not satisfy these sufficient conditions

A plausible belief was that there might be some subgaussian
distributions that are not certifiably subgaussian

> Indeed, there is a huge gap between bounded & certifiably bounded

>

[HL19]

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019
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Prior work: certifiable subgaussianity vs. subgaussianity

Known sufficient conditions for certifiability are rather strong

However, many subgaussians do not satisfy these sufficient conditions

A plausible belief was that there might be some subgaussian
distributions that are not certifiably subgaussian

Can we characterize certifiable subgaussianity?
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Our result: certifiability of subgaussian distributions

Theorem: [DHPT24]

For all d € N, subgaussian distributions X on R9, and even p €N,

(CvpPIvlls = Ex[(v, X — )”]

is a sum of square polynomials.

Hence, all subgaussian distributions are certifiably SO (upto an absolute constant &)
New algorithmic implications for subgaussian data:

> Robust statistics (extslide)

> Clustering and mixture models

> Sparse PCA, Distortion of a subspace, Hypercontractivity, . . .
> Likely, more in the future

Evidence of computational hardness for gaussian data certification
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Our result: new algorithmic guarantees for robust statistics

Intier Information- Previous Best
Robust Estimation Task L theoretic Guarantee in New Guarantees
Distribution e
Error Polynomial Time
Mean estimation: . = 1-1/m
Euclidean norm subgaussian O(e) Ve €
List-decodable . ~ 1 —Q(L)
1 ™m
mean estimation subgaussian O(e) T—e (1,5)
Mixture models:
Mixture of k& each component 1
> /log k > Q1) > o5

A-separated is subgaussian AR Viogk ARk AZk ()
components
Mean estimation: hypercontractive (:)(e) No general 1-1/m
Mahalanobis norm subgaussian algorithm €
Covariance estimation: ~ hypercontractive = No general 1-2/m

) . O(e) . €
Relative spectral norm subgaussian algorithm
Linear regression: hypercontractive é(e) No general 1_2
Arbitrary noise subgaussian algorithm e m
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Proof Sketch

Ey [Ex [(v, X)P]]

(SoS Duality) Equivalent to showing Sy Ell07] < small
N 5 E,[2 Z?=1<U,Xi>p]]
(Ghost samples & empirical process) [Edse‘g‘rfe_p E[o|]

E[(v,X;)?]
E[]jv|IP]

> Control sup ¢ » % >, f(X3), where F .= {a: — :Eis degree—p}

(Generic Chaining) For any linear function class Fji,

n

]E[ sup %ifz(Xz)] S]E[ sup %Zfz(Gz)]

(f1,-fn)€Fn =1 (f1-fn)€Fn =1
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Proof Sketch

Ey [Ex [(v, X)P]]

(SoS Duality) Equivalent to showing Sy Ell0]7] < small
o E[ sup Eo[L Z?=1<U,X¢>p]]
(Ghost samples & empirical process) Ey &[|[o|[7]

> Control supse» 1 30, £(X;), where F := {m s El0.X0)P)

Rl :Eis degree-p}

(Generic Chaining) For any linear function class Fj;,,

B[ sp I A SE[ se 23 nG))]

(f1, s fR)€FRIn =1 (f1sesfn)€Flin - j—1
> Sadly, our F is nonlinear (subset of degree-p polynomials)

(Linearization) Luckily, E[ ", (v, X;)P] has a linear-ish formualation

> Justlike 3=,y = [ly||h = sup,ep, (v, y)? by Holder's inequality

Duality+Linearization+Chaining — Proof
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Conclusion

We showed that all subgaussian distributions are certifiably so

Algorithmic implications (both upper and lower bounds)

Many open problems:
> As a starting point, what about subexponential distributions?

> Can we characterize the penalty of certifiably bounded moments?

> Can we develop faster algorithms without solving large SDPs?

Thank you and happy to chat more!
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