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Motivation: Distributional assumptions and accuracy

Generic Estimation Problem. Let P be a family of distributions over Rd

and θ∗ : P → Θ be the target parameter.

Input: samples from (unknown) Q ∈ P

Output: θ̂ such that distance
(
θ̂, θ∗(Q)

)
is small w.h.p.

▶ Naturally, as P gets nicer, optimal error gets smaller

▷ Want to impose minimal assumptions on P

▶ Unfortunately, current algorithmic guarantees often do not improve

▷ Unless, the niceness assumption on P is algorithmically-tractable

Understanding “niceness” versus “tractable niceness”
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Motivation: Tail decay and moment bounds

▶ Often, the optimal error is governed by tail bounds of linear forms:

For all vectors v ∈ Rd: P (⟨v,X− µ⟩ > y∥v∥2 ) ≪ small(y)

▶ Equivalently, on the moments of linear forms

For all vectors v ∈ Rd: E
[
|⟨v,X− µ⟩|t

]
⩽ Bound(t)∥v∥t

▶ This motivates the definition of subgaussian distributions
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Motivation: Subgaussianity versus gaussianity

Definition. X is Subgaussian if its moments grow slower than Gaussian.

For all v ∈ Rd and even t:

▶ Equivalently, P (⟨v,X− µ⟩ ≫ y∥v∥) ⩽ exp(−y2)

▶ Thus, we relax the unrealistic gaussianity assumption

while keeping
similar information-theoretic optimal error

▶ However, current computationally-efficient algorithms seem unable to
use subgaussianity

▷ Even though they are able to use gaussianity
▷ In fact, their error scales as if only the second moment (t = 2) is bounded

Algorithmically-tractable version of subgaussianity?

E
[
⟨v,X− µ⟩t

]
⩽ EG∼N(0,Id)[⟨v,G⟩t]
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Example: Robust covariance estimation of sub-Gaussians

Let Q be a sub-Gaussian distribution over Rd with covariance Σ

Input: outlier-corrupted samples from Q

Output: Σ̂ such that ∥Σ̂− Σ∥op is small w.h.p.

a small fraction
of samples

are arbitrary

▶ Information theoretic error: dimension-independent

▶ Algorithmically: not well-understood

▷ ErrorEfficient-algorithms(sub-Gaussian) ≫ ErrorEfficient-algorithms(Gaussian)

▷ Also true for (robust) regression, mean estimation, clustering, . . .

What are the underlying algorithmic challenges?
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Challenges in robust covariance estimation

Algorithmic template: robust mean estimation
1. While there exists a direction v with large variance:

1.1 Filter a point x if ⟨v, x⟩ is too large
2. return sample mean

▶ Need to find a direction v̂ ≈ argmax
v∈Sd−1

EX[⟨v,X⟩t] (for t ⩾ 4)

▶ Unfortunately, intractable (in the worst-case over X)

▶ Further structure?

Do sub-Gaussian data (X) have
algorithm-friendly structure?
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Challenge: Checking the moments efficiently

▶ The t-th moment bound of the distribution X is

▷ Subgaussianity ⇐⇒ bounded appropriately for all even t

▶ A central object in many applications

▷ Injective tensor norm of the t-tensor EX[X
⊗t]

▷ The 2-to-t norm of the n× d matrix A,
▶ where A has rows a1, . . . ,an and X is uniform on (a1, . . . ,an)

▶ Challenge. No efficient algorithm for constant approximation (for t ⩾ 4)

▷ Under Exponential Time Hypothesis [BBHKSZ12]

[BBHKSZ12] B. Barak, F. G.S.L. Brandao, A. W. Harrow, J. Kelner, D. Steurer, Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. STOC. 2012

▷ Stronger hardness under Small Set Expansion Hypothesis [BBHKSZ12; HL19]

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019

Algorithmically-tractable version of subgaussianity?

max
v

EX

[
⟨v,X⟩t

]

∥v∥t
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Algorithmically-tractable version of subgaussianity?

max
v

EX

[
⟨v,X⟩t

]

∥v∥t
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sub-Gaussian: moments less than Gaussians

non-negative
polynomials

sum-of-squares

all polynomials

Challenge: checking if the moment polynomial EX[⟨v,X⟩t] (for t ⩾ 4) is bounded
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− EX

[
⟨v,X⟩t

]

for some polynomials q1(·), . . . ,

not only are the moments boundedthe moments are bounded in a sum-of-squares way: for all even t,

⩾ 0=
∑

i q
2
i(v)

not only ⩾ 0,
but also a SoS polynomials

Proposed in [KSS18; HL18] and hugely influential since then

[KSS18] P. K. Kothari, J. Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018

[HL18] S. B. Hopkins, J. Li. Mixture Models, Robustness, and Sum of Squares Proofs. STOC. 2018

▶ For this class of distributions, we get polynomial-time algorithms!

Which distributions are certifiably sub-Gaussian anyway?
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Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

▶ Sufficient conditions for certifiability are rather strong

▷ rotational invariance, independent coordinates
▷ log-Sobolev distributions (more generally, Poincare) [KSS18]

[KSS18] P. K. Kothari, J. Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018

▷ and simple transformations thereof (simple within SoS)

▶ Many sub-Gaussians do not satisfy these sufficient conditions

▷ Existing proofs crucially need Var(x⊤Jx) ≲ ∥J∥2
Fr

(SoS in variable J)

▷ Which is not true for many subgaussians

▶ In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

▷ There exists X with bounded moments

▷ but X does NOT have certifiably bounded moments

EX[⟨v,X⟩100] ⩽ O(1)∥v∥100
2 for all v

C∥v∥4
2 − EX[⟨v,X⟩4] is not sum-of-squares

for any constant C
▶ Led to the belief that certifiable sub-Gaussianity is also strictly

stronger than sub-Gaussianity

Can we characterize the class of

certifiably sub-Gaussians?

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019

sub-Gaussian
certifiable

sub-Gaussian
Gaussians

sub-Gaussiancertifiable
sub-Gaussian=

Gaussians
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Our result: Certifiability of sub-Gaussian distributions

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any d ∈ N, sub-Gaussian distribution X on Rd, and even t ∈ N

,

EG∼N(0,CI)
[
⟨v,G⟩t

]
−EX

[
⟨v,X−µ⟩t

]
=

∑
i

q2
i(v) for some polynomials q1, . . . ,.

▶ Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019)
& extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

▷ Even for the fourth moment (t = 4), the prior best bound was
√
d

▶ We show sub-Gaussians also have other algorithm-friendly structures
▶ Conceptual contribution: connecting SDP relaxations & empirical processes

▶ Corollary: new polynomial-time algorithms for sub-Gaussian data

▶ Corollary: new computational lower bounds for Gaussian data (certification)

[DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025
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New algorithmic guarantees for sub-Gaussian data

▶ We give the first polynomial-time algorithms for

▷ robust covariance estimation

▷ robust linear regression

▷ robust covariance-aware mean estimation

In contrast, prior algorithmic guarantees were vacuous

▶ We also vastly improve the error of polynomial-time algorithms for

▷ robust mean estimation

▷ clustering and mixture models

In contrast, prior algorithmic guarantees were worse (sub-Gaussian vs. second moment)

▶ Our algorithmic guarantees are qualitatively-optimal∗ (within low-degree
polynomial tests, statistical query algorithms, sum-of-squares hierarchy)
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New algorithmic guarantees for sub-Gaussian data

Robust Estimation Task
Inlier

Distribution

Information-
theoretic

Error

Previous Best
Guarantee in

Polynomial Time
New Guarantees

Covariance estimation:
Relative spectral norm

hypercontractive
sub-Gaussian Θ̃(ϵ)

No general
algorithm ϵ1−2/m

Mean estimation:
Mahalanobis norm

hypercontractive
sub-Gaussian Θ̃(ϵ)

No general
algorithm ϵ1−1/m

Linear regression:
Arbitrary noise

hypercontractive
sub-Gaussian Θ̃(ϵ)

No general
algorithm ϵ1− 2

m

Mean estimation:
Euclidean norm sub-Gaussian Θ̃(ϵ)

√
ϵ ϵ1−1/m

List-decodable
mean estimation sub-Gaussian Θ̃(ϵ)

√
1

1−ϵ

( 1
1−ϵ

)−Ω( 1
m )

Mixture models:
Mixture of k
∆-separated
components

Each component
is sub-Gaussian ∆ ≳

√
logk ∆ ≳ kΩ(1) ∆ ≳ kO( 1

m )
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Proof sketch

A series of equivalences using

1. duality

2. empirical processes

3. linearization
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Proof sketch: (1/3) Duality

Original formulation Certifiable formulation

X is sub-Gaussian

∀v: q(v) ⩽ B∥v∥t

q(v) := EX[⟨v,X⟩t]

⇐
⇒

max
E :over Rd

E v[q(v)]

E v[∥v∥t]
⩽ B

⇐
⇒

Depends only on the
degree-t moments of E

X is certifiably sub-Gaussian

q(v) ⩽sos B∥v∥t

⇐
⇒

max
Ẽ :degree-t

Ẽ v[q(v)]

Ẽ v[∥v∥t]
⩽ B

⇐
⇒

A "pseudo"-expectation

q(v) := E[⟨v,X⟩t]
B := (Θ(

√
t))t

Set of degree-t
moments over Rp

Set of degree-t
moments over Rp

Set of degree-t
moments over Rp

Equivalent to showing that the dual is bounded
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Proof sketch: (2/3) Empirical process

sup
Ẽ :degree-t

Ẽ
[
E [⟨v,X⟩t]

]

Ẽ [∥v∥t]

sup
Ẽ :degree-t

E
[ 1
n

∑n
i=1 Ẽ [⟨v,Xi⟩t]

]

Ẽ [∥v∥t]
=

E
X1,...,Xn


 sup
Ẽ :degree-t

1
n

n∑
i=1

Ẽ
[
⟨v,Xi⟩t

]

Ẽ [∥v∥t]


⩽

E
X1,...,Xn

[
sup
f∈F

1
n

n∑
i=1

f(Xi)

]
=

an empirical process

F :=

x 7→ Ẽ [⟨v,x⟩t]

Ẽ [∥v∥t]
: Ẽ degree-t



Is this empirical process bounded for all sub-Gaussians?

certifiabile sub-Gaussianity ⇐⇒ dual is bounded

Ẽ : a "pseudo"-expectation
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Ẽ :degree-t

Ẽ
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Ẽ :degree-t

E
[ 1
n

∑n
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i=1 Ẽ [⟨v,Xi⟩t]

]
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Ẽ :degree-t

Ẽ
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x 7→ Ẽ [⟨v,x⟩t]
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Proof sketch: (3/3) Chaining

▶ Foundational result in probability: Talagrands’s generic chaining

▷ all sub-Gaussian linear process ⩽ Gaussian linear process

▷ but our process is non-linear

. Can we still use it?

▶ Beyond linear processes, chaining also applies if f is “linear-ish”

▷ supg∈G⟨g,x⟩ or
(
supg∈G⟨g,x⟩

)t

Lemma.
∑

i f(xi) is “linear-ish” and generic chaining is applicable

For all sub-Gaussians, our process is bounded by Gaussians!

E
X′
i
s


 sup

f:from degree-t Ẽ

1
n

n∑
i=1

f(Xi)




f(x) =
Ẽ [⟨v,x⟩t]

Ẽ [∥v∥t]
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Ẽ [⟨v,x⟩t]
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Proof sketch: Putting the pieces together

X is certifiably-
sub-Gaussian

Empirical process
on X

is bounded
⇐⇒
Duality Linearized process

on X

is bounded
⇐⇒

Linearization

Linearized process
on Gaussian
is bounded

⇐
⇒ Generic

chaining

Empirical process
on Gaussian
is bounded

⇐⇒
LinearizationGaussian is

certifiably-
sub-Gaussian

⇐⇒
Duality

Since this is true

this is also true

X is sub-Gaussian
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Our result: Certifiability of sub-Gaussian distributions

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any d ∈ N, sub-Gaussian distribution X on Rd, and even t ∈ N,

EG∼N(0,CI)
[
⟨v,G⟩t

]
−EX

[
⟨v,X−µ⟩t

]
=

∑
i

q2
i(v) for some polynomials q1, . . . ,.

▶ Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019)
& extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

▷ Even for the fourth moment (t = 4), the prior best bound was
√
d

▶ We show sub-Gaussians also have other algorithm-friendly structures
▶ Conceptual contribution: connecting SDP relaxations & empirical processes

▶ Corollary: new polynomial-time algorithms for sub-Gaussian data

▶ Corollary: new computational lower bounds for Gaussian data (certification)

[DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025
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Conclusion
▶ Established that all subgaussian distributions are certifiably so

▶ As a corollary, we get a host of new algorithmic guarantees

Open problems:

▶ Going beyond subgaussianity for certifiably bounded moments.
▷ Subexponential distributions?

▶ What is the largest class of distributions P and smallest B that leads
to (quasi)-polynomial algorithm for deciding/refuting between:

Let B ≫ 1 and P ⊂
{
P : supv∈Sd−1 EX∼P[⟨v,X⟩4] ⩽ 1

}
.

Null: X1, . . . ,Xn are iid from P ∈ P

Alternate: X1, . . . ,Xn are iid from Q with supv∈Sd−1 EX∼Q[⟨v,X⟩4] ⩾ B

Thank you for your attention!
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to (quasi)-polynomial algorithm for deciding/refuting between:

Let B ≫ 1 and P ⊂
{
P : supv∈Sd−1 EX∼P[⟨v,X⟩4] ⩽ 1

}
.

Null: X1, . . . ,Xn are iid from P ∈ P

Alternate: X1, . . . ,Xn are iid from Q with supv∈Sd−1 EX∼Q[⟨v,X⟩4] ⩾ B

Thank you for your attention!
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Outline

▶ Proof of SoS Certifiability
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Chaining and linearization

Talagrand’s generic chaining. For any linear function class Flin

E
[

sup
(f1,...,fn)∈Flin

1
n

n∑
i=1

fi(Xi)
]
≲ E

[
sup

(f1,...,fn)∈Flin

1
n

n∑
i=1

fi(Gi)
]

Our linearization lemma

Lemma. (f is linear-ish) For every f ∈ F, there exists G such that∑
i

f(xi) :=
(

sup
(g1,...,gn)∈G

∑
i

⟨gi, xi⟩
)t

▶ Intuition:
∑

i y
t
i = ∥y∥tt = supz

〈
z

∥z∥q ,y
〉t

by Holder’s inequality

▶ Extends to Ẽ: (i) yi = ⟨v,Xi⟩ and (ii) Holder’s inequality holds for Ẽ

E
X′
i
s


 sup
Ẽ:degree-t

1
n

n∑
i=1

f(Xi)




f(x) =
Ẽ[⟨v,Xi⟩

t]

Ẽ[∥v∥t]
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