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Generic Estimation Problem. Let P be a family of distributions over R¢
and 0% : P — O be the target parameter.

Input: samples from (unknown) Q € P

Output: 0 such that distance (5, 0* (Q)) is small w.h.p.

Naturally, as P gets nicer, optimal error gets smaller
> Want to impose minimal assumptions on P
Unfortunately, current algorithmic guarantees often do not improve

> Unless, the niceness assumption on P is algorithmically-tractable

Understanding “niceness” versus “tractable niceness”
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Motivation: Tail decay and moment bounds

Often, the optimal error is governed by tail bounds of linear forms:
Forall vectorsv € R%: P ((v,X — ) > y|jv|,) < small(y)
Equivalently, on the moments of linear forms
Forallvectorsv € R%: E [|(v,X — p)|'] < Bound(t)|[v]*

This motivates the definition of subgaussian distributions
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Definition. X is Subgaussian if its moments grow slower than Gaussian.

Forallv e RYandevent: E [(v, X — )] < Eg-n(o1,4) (W G)"]

Equivalently, P ({v, X — ) > y|[v]|) < exp(—y?)

Thus, we relax the unrealistic gaussianity assumption while keeping
similar information-theoretic optimal error

However, current computationally-efficient algorithms seem unable to
use subgaussianity

> Even though they are able to use gaussianity
> In fact, their error scales as if only the second moment ( =) is bounded

Algorithmically-tractable version of subgaussianity?
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Example: Robust covariance estimation of sub-Gaussians

Let Q be a sub-Gaussian distribution over R% with covariance £
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Example: Robust covariance estimation of sub-Gaussians

Let Q be a sub-Gaussian distribution over R% with covariance £

Input: outlier-corrupted samples from Q

Output: T such that || — 2 ||op is small w.h.p.

Information theoretic error: dimension-independent
Algorithmically: not well-understood
> ErrOreficient-algorithms (SUb-Gaussian) > Erroremcient-atgorithms (Gaussian)

> Also true for (robust) regression, mean estimation, clustering, ...

What are the underlying algorithmic challenges?
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Challenges in robust covariance estimation

Algorithmic template: robust mean estimation
1. While there exists a direction v with large variance:
14 Filter a point x if (v, x) is too large
2. return sample mean
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Challenges in robust covariance estimation

Algorithmic template: robust covariance estimation
1. While there exists a direction v with large t-th moment (for t > 4
14 Filter a point x if (v, x)? is too large
2. return sample covariance

Need to find a direction v &~ argmax Ex [(v, X)'] tort >
ve§d—

Unfortunately, intractable (in the worst-case over X)

Further structure?

Do sub-Gaussian data (X) have
algorithm-friendly structure?
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Challenge: checking if the moment polynomial Ex [(v, X)!] ¢ort >4 is bounded

Given an arbitrary degree-t (rort > ») polynomial h(-) on R4,
It is hard to check if it is always > o

But easy to check if h(v) = ) ; q3(v), ie, sum-of-squares, & thus > o

\—a semidefinite program

all polynomials

non-negative
polynomials
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all polynomials

Algorithm-friendly subsets of sub-Gaussians

Challenge: checking if the moment polynomial Ex [(v, X)!] ¢ort >4 is bounded

Definition. (aigorithm-friendly sub-Gaussians) X is certifiably-sub-Gaussian if

the moments are bounded in a sum-of-squares way: for all even t,
Eg-nion [(»G)'] —Ex [(vX)'] =¥ qiv)

for some polynomials g4(-),...,

Proposed in [KSS18; HL18] and hugely influential since then

For this class of distributions, we get polynomial-time algorithms!

Which distributions are certifiably sub-Gaussian anyway?
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> log-Sobolev distributions (more generally, Poincare) [kss18]

> and simple transformations thereof (simple within Sos)

Many sub-Gaussians do not satisfy these sufficient conditions

In general, certifiability of (onstanty-manyy moments is strictly stronger*uus
> There exists X with bounded moments Ex [(v,X)™°] < O(1)||v[[3° forall v

> but X does NOT have certifiably bounded moments Cl[v|[z — Ex [(v, X)“]is not sum-of-squares

for any constant C

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019
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Sufficient conditions for certifiability are rather strong
> rotational invariance, independent coordinates
> log-Sobolev distributions (more generally, Poincare) [kss18]

> and simple transformations thereof (simple within Sos)

Many sub-Gaussians do not satisfy these sufficient conditions

In general, certifiability of (onstanty-manyy moments is strictly stronger*uus

> There exists X with bounded moments

> but X does NOT have certifiably bounded moments

Led to the belief that certifiable sub-Gaussianity is also strictly
stronger than sub-Gaussianity

certifiable
sub- Gaussiaw

certifiable .
N sub-Gaussian

Can we characterize the class of

certifiably sub-Gaussians?
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i

Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019)
& extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

> Even for the fourth moment (t = 4), the prior best bound was v/d
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New algorithmic guarantees for sub-Gaussian data

We give the first polynomial-time algorithms for
> robust covariance estimation
> robust linear regression
> robust covariance-aware mean estimation
In contrast, prior algorithmic guarantees were vacuous
We also vastly improve the error of polynomial-time algorithms for
> robust mean estimation

> clustering and mixture models

In contrast, prior algorithmic guarantees were worse (sub-Gaussian vs. second moment)

Our algorithmic guarantees are qualitatively-optimal™ within tow-degree

polynomial tests, statistical query algorithms, sum-of-squares hierarchy)
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New algorithmic guarantees for sub-Gaussian data

Intier Information- Previous Best
Robust Estimation Task s theoretic Guarantee in New Guarantees
Distribution -
Error Polynomial Time
Covariance estimation:  hypercontractive ~ No general 1—2/m
. . O(e) . €
Relative spectral norm sub-Gaussian algorithm
Mean estimation: hypercontractive B(e) No general 1—1/m
Mahalanobis norm sub-Gaussian algorithm €
Linear regression: hypercontractive C:)(e) No general —2
. . . . m
Arbitrary noise sub-Gaussian algorithm €
Mean estimation: . ~ 1—1/m
Euclidean norm sub-Gaussian O(e) Ve €
List-decodable . ~ P 1 —0(M)
mean estimation sub-Gaussian ©(e) —e () m
Mixture models:
Mi fk Each
ixture o ach component A > Jiogk A > KOO A> KO()

A-separated
components

is sub-Gaussian
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Proof sketch

A series of equivalences using

1. duality

2. empirical processes

3. linearization
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q(v) :==E[(v,X)!]

Proof sketch: (1/3) Duality B = (6(v1)*
Original formulation Certifiable formulation
X is sub-Gaussian X is certifiably sub-Gaussian
Vv q(v) < BJv[I* q(v) <sos BIIV|I*

t =~
[E over R4 EV[HVH ] [E :degree-t IEv HV”
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q(v) :=E[v,X)!]
Proof sketch: (1/3) Duality B:=(6(VD)"

max wgg

E:degree—t IEV HVH

k/\ A "pseudo”-expectation

Equivalent to showing that the dual is bounded
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sup —
E [||v|It]

E :degree-t
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— sup ~
. t
E:degree—t B [”V” ]
no=
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XX ]E:degree—t i K [HVHt]
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certifiabile sub-Gaussianity <—> dual is bounded

Proof sketch: (2/3) Empirical process E:a "pseudo-expecation

an empirical process

n
1
sup — (X
fegnZ ( 1)1

= N
Fi={x— M : E degree-t
E(fvi*]

Is this empirical process bounded for all sub-Gaussians?
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X!s = —
1 | f:from degree-t E =l

Proof sketch: (3/3) Chaining
E [(v.x)t]

f(x) = —
E (|Iv]It]

Foundational result in probability: Talagrands’s generic chaining

> all sub-Gaussian linear process < Gaussian linear process

> but our process is non-linear. Can we still use it?

Beyond linear processes, chaining also applies if f is “linear-ish”

t
> supgeg(g,x) or (supgeg(g,x>)

Lemma. ) ; f(x;) is “linear-ish” and generic chaining is applicable

For all sub-Gaussians, our process is bounded by Gaussians!
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Our result: Certifiability of sub-Gaussian distributions
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Conclusion

Established that all subgaussian distributions are certifiably so

As a corollary, we get a host of new algorithmic guarantees
Open problems:

Going beyond subgaussianity for certifiably bounded moments.
> Subexponential distributions?

What is the largest class of distributions P and smallest B that leads
to uasi-polynomial algorithm for deciding/refuting between:

Let B> 1and P C {P s supyega—t Exp[(v, X)4] < 1}.
Null: Xi, ..., X areiid fromP € P

Alternate: X4, ..., Xy areiid from Q with sup,,cga— Ex-q[(v,X)*] > B

Thank you for your attention!
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X!s
i

Chaining and linearization

E l: sup lZf(Xi):|

E:degree-t " §—1

El(vXxpt

Talagrand'’s generic chaining. For any linear function class F,

(fh,,,,fn)EfT“n 1=1 (f1y~~~yfn)€3:lin 1=1

) =gy

E sup ;iﬂ(xi)] 51&3{ sup ;ifi(Gi)}

Our linearization lemma

Lemma. (f is linear-ish) For every f € F, there exists G such that

Zf(xi)::< sup Z<9hxi>)t

(g1-9gn)ES i
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Chaining and linearization L

E[(vX{)*]
E[||v|It]

f(x) =

Talagrand'’s generic chaining. For any linear function class F,

n n
E sup 1 f—(X-)] < E{ sup L f-(G-)}
(Frrfr ) EF i Z s (Frrfr ) EF i Z s

i=1 i=1

Our linearization lemma

Lemma. (f is linear-ish) For every f € F, there exists G such that

Zf(xi)::< sup Z<9hxi>)t

(g1-9gn)ES i

t
Intuition: }_; yt = [Jy||t = sup, <m,y> by Holder's inequality
Extends to [E: (i) yi = (v, Xi) and (ii) Holder's inequality holds for E
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