SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications

Ankit Pensia

Simons Institute (UC Berkeley) \rightarrow CMU Statistics

2025 TTIC Summer Workshop Program on Information-Computation Tradeoffs for Statistical Problems

loint work with

Ilias

Sam Diakonikolas Hopkins

Stefan Tiegel

Outline

Motivation

- Prior Work
- Our Result
- Proof Sketch
- Conclusion

Motivation: Distributional assumptions and accuracy

Generic Estimation Problem. Let $\mathcal P$ be a family of distributions over $\mathbb R^d$ and $\theta^*:\mathcal P\to\Theta$ be the target parameter.	
Input:	samples from (unknown) $\mathbf{Q}\in\mathfrak{P}$
Output:	$\widehat{\theta}$ such that $distance\big(\widehat{\theta}, \theta^*(Q)\big)$ is small w.h.p.

Motivation: Distributional assumptions and accuracy

Generic Estimation Problem. Let $\mathcal P$ be a family of distributions over $\mathbb R^d$ and $\theta^*:\mathcal P o\Theta$ be the target parameter.	
Input:	samples from (unknown) $\mathbf{Q}\in\mathfrak{P}$
Output:	$\widehat{\theta}$ such that $distance\big(\widehat{\theta}, \theta^*(Q)\big)$ is small w.h.p.

 \blacktriangleright Naturally, as $\mathcal P$ gets **nicer**, optimal error gets **smaller**

 $\,\triangleright\,\,$ Want to impose minimal assumptions on ${\mathcal P}$

Motivation: Distributional assumptions and accuracy

Generic Estimation Problem. Let $\mathcal P$ be a family of distributions over $\mathbb R^d$ and $\theta^*:\mathcal P\to\Theta$ be the target parameter.	
Input:	samples from (unknown) $\mathbf{Q}\in\mathfrak{P}$
Output:	$\widehat{\theta}$ such that $distance\big(\widehat{\theta}, \theta^*(Q)\big)$ is small w.h.p.

- Naturally, as \mathcal{P} gets **nicer**, optimal error gets **smaller**
 - $\triangleright\;$ Want to impose minimal assumptions on $\mathcal P$
- Unfortunately, current algorithmic guarantees often do not improve

Motivation: Distributional assumptions and accuracy

Generic Estimation Problem. Let \mathcal{P} be a family of distributions over \mathbb{R}^d and $\theta^* : \mathcal{P} \to \Theta$ be the target parameter.	
Input:	samples from (unknown) $\mathbf{Q}\in\mathfrak{P}$
Output:	$\widehat{\theta}$ such that $distance\big(\widehat{\theta}, \theta^*(Q)\big)$ is small w.h.p.

- Naturally, as \mathcal{P} gets nicer, optimal error gets smaller
 - $\,\triangleright\,\,$ Want to impose minimal assumptions on ${\mathcal P}$
- Unfortunately, current algorithmic guarantees often do not improve
 - $\triangleright~$ Unless, the **niceness** assumption on $\mathcal P$ is algorithmically-tractable

Motivation: Distributional assumptions and accuracy

Generic Estimation Problem. Let \mathcal{P} be a family of distributions over \mathbb{R}^d and $\theta^* : \mathcal{P} \to \Theta$ be the target parameter.	
Input:	samples from (unknown) $\mathbf{Q}\in\mathfrak{P}$
Output:	$\widehat{\theta}$ such that $distance\big(\widehat{\theta}, \theta^*(Q)\big)$ is small w.h.p.

- Naturally, as \mathfrak{P} gets nicer, optimal error gets smaller
 - $\triangleright\;$ Want to impose minimal assumptions on $\mathcal P$
- Unfortunately, current algorithmic guarantees often do not improve
 - \triangleright Unless, the **niceness** assumption on $\mathcal P$ is **algorithmically-tractable**

Understanding "niceness" versus "tractable niceness"

Motivation: Tail decay and moment bounds

4/24

Often, the optimal error is governed by tail bounds of linear forms:

 $\text{For all vectors } \nu \in \mathbb{R}^d \text{:} \quad \mathbb{P}\left(\langle \nu, X - \mu \rangle \, > \, y \| \nu \|_{^2} \, \right) \ll \text{small}(y)$

Motivation: Tail decay and moment bounds

4/24

Often, the optimal error is governed by tail bounds of linear forms:

 $\text{For all vectors } \nu \in \mathbb{R}^d \colon \quad \mathbb{P}\left(\langle \nu, X - \mu \rangle \, > \, y \| \nu \|_{^{2}} \, \right) \ll \text{small}(y)$

Equivalently, on the **moments** of **linear forms**

 $\text{For all vectors } \nu \in \mathbb{R}^d \text{:} \quad \mathbb{E}\left[| \langle \nu, X - \mu \rangle |^t \right] \ \leqslant \text{Bound}(t) \| \nu \|^t$

Motivation: Tail decay and moment bounds

4/24

• Often, the optimal error is governed by tail bounds of linear forms: For all vectors $v \in \mathbb{R}^d$: $\mathbb{P}(\langle v, X - \mu \rangle > y \|v\|_2) \ll \text{small}(y)$

Equivalently, on the moments of linear forms

 $\text{For all vectors } \nu \in \mathbb{R}^d \text{:} \quad \mathbb{E}\left[| \langle \nu, X - \mu \rangle |^t \right] \ \leqslant \text{Bound}(t) \| \nu \|^t$

This motivates the definition of subgaussian distributions

Definition. X is **Subgaussian** if its moments grow slower than **Gaussian**.

For all $\nu \in \mathbb{R}^d$ and even t: $\mathbb{E}\left[\langle \nu, X - \mu \rangle^t\right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(o, I_d)}[\langle \nu, G \rangle^t]$

Definition. X is **Subgaussian** if its moments grow slower than **Gaussian**.

For all $\nu \in \mathbb{R}^d$ and even t: $\mathbb{E}\left[\langle \nu, X - \mu \rangle^t\right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(o, I_d)}[\langle \nu, G \rangle^t]$

Definition. X is **Subgaussian** if its moments grow slower than **Gaussian**.

 $\text{For all }\nu\in\mathbb{R}^d\text{ and even }t\text{: }\mathbb{E}\left[\langle\nu,X-\mu\rangle^t\right]\leqslant\mathbb{E}_{G\sim\mathcal{N}(\mathsf{o},\mathsf{I}_d)}[\langle\nu,G\rangle^t]$

• Equivalently, $\mathbb{P}\left(\langle v, X - \mu \rangle \gg y \|v\|\right) \leq \exp(-y^2)$

Definition. X is Subgaussian if its moments grow slower than Gaussian.

For all $\nu \in \mathbb{R}^d$ and even t: $\mathbb{E}\left[\langle \nu, X - \mu \rangle^t\right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(o, I_d)}[\langle \nu, G \rangle^t]$

► Equivalently, $\mathbb{P}(\langle v, X - \mu \rangle \gg y \|v\|) \leq \exp(-y^2)$

Thus, we relax the unrealistic gaussianity assumption

Definition. X is Subgaussian if its moments grow slower than Gaussian.

For all $\nu \in \mathbb{R}^d$ and even t: $\mathbb{E}\left[\langle \nu, X - \mu \rangle^t\right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(o, I_d)}[\langle \nu, G \rangle^t]$

- ► Equivalently, $\mathbb{P}(\langle v, X \mu \rangle \gg y \|v\|) \leq \exp(-y^2)$
- Thus, we relax the unrealistic gaussianity assumption while keeping similar information-theoretic optimal error

Definition. X is Subgaussian if its moments grow slower than Gaussian.

 $\text{For all } \nu \in \mathbb{R}^d \text{ and even } t \text{: } \mathbb{E}\left[\langle \nu, X - \mu \rangle^t \right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(\mathsf{o}, \mathsf{I}_d)}[\langle \nu, G \rangle^t]$

- ► Equivalently, $\mathbb{P}\left(\langle v, X \mu \rangle \gg y \|v\|\right) \leq \exp(-y^2)$
- Thus, we relax the unrealistic gaussianity assumption while keeping similar information-theoretic optimal error
- However, current computationally-efficient algorithms seem unable to use subgaussianity

Definition. X is Subgaussian if its moments grow slower than Gaussian.

 $\text{For all } \nu \in \mathbb{R}^d \text{ and even } t \text{: } \mathbb{E}\left[\langle \nu, X - \mu \rangle^t \right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(\mathsf{o}, \mathsf{I}_d)}[\langle \nu, G \rangle^t]$

- ► Equivalently, $\mathbb{P}(\langle v, X \mu \rangle \gg y \|v\|) \leq \exp(-y^2)$
- Thus, we relax the unrealistic gaussianity assumption while keeping similar information-theoretic optimal error
- However, current computationally-efficient algorithms seem unable to use subgaussianity
 - > Even though they are able to use gaussianity

Definition. X is Subgaussian if its moments grow slower than Gaussian.

 $\text{For all } \nu \in \mathbb{R}^d \text{ and even } t \text{: } \mathbb{E}\left[\langle \nu, X - \mu \rangle^t \right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(\mathsf{o}, \mathsf{I}_d)}[\langle \nu, G \rangle^t]$

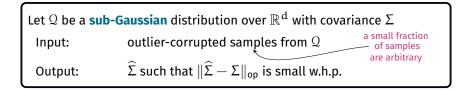
- ► Equivalently, $\mathbb{P}\left(\langle v, X \mu \rangle \gg y \|v\|\right) \leqslant \exp(-y^2)$
- Thus, we relax the unrealistic gaussianity assumption while keeping similar information-theoretic optimal error
- However, current computationally-efficient algorithms seem unable to use subgaussianity
 - > Even though they are able to use gaussianity
 - $\triangleright~$ In fact, their error scales as if only the second moment (t=2) is bounded

Definition. X is Subgaussian if its moments grow slower than Gaussian.

 $\text{For all } \nu \in \mathbb{R}^d \text{ and even t: } \mathbb{E}\left[\langle \nu, X - \mu \rangle^t\right] \leqslant \mathbb{E}_{G \sim \mathcal{N}(o, I_d)}[\langle \nu, G \rangle^t]$

- ► Equivalently, $\mathbb{P}\left(\langle v, X \mu \rangle \gg y \|v\|\right) \leq \exp(-y^2)$
- Thus, we relax the unrealistic gaussianity assumption while keeping similar information-theoretic optimal error
- However, current computationally-efficient algorithms seem unable to use subgaussianity
 - > Even though they are able to use gaussianity
 - $\triangleright~$ In fact, their error scales as if only the second moment (t=2) is bounded

Algorithmically-tractable version of subgaussianity?



Let ${\mathbb Q}$ be a sub-Gaussian distribution over ${\mathbb R}^d$ with covariance Σ	
Input:	outlier-corrupted samples from $\ensuremath{\mathbb{Q}}$
Output:	$\widehat{\Sigma}$ such that $\ \widehat{\Sigma}-\Sigma\ _{op}$ is small w.h.p.

Information theoretic error: dimension-independent

Let ${\mathfrak Q}$ be a sub-Gaussian distribution over ${\mathbb R}^d$ with covariance Σ	
Input:	outlier-corrupted samples from $\ensuremath{\mathbb{Q}}$
Output:	$\widehat{\Sigma}$ such that $\ \widehat{\Sigma}-\Sigma\ _{op}$ is small w.h.p.

- Information theoretic error: dimension-independent
- Algorithmically: not well-understood

Let ${\mathbb Q}$ be a sub-Gaussian distribution over ${\mathbb R}^d$ with covariance Σ	
Input:	outlier-corrupted samples from $\ensuremath{\mathbb{Q}}$
Output:	$\widehat{\Sigma}$ such that $\ \widehat{\Sigma}-\Sigma\ _{op}$ is small w.h.p.

- Information theoretic error: dimension-independent
- Algorithmically: not well-understood
 - ${\scriptstyle \vartriangleright \ \ Error_{Efficient-algorithms}(sub-Gaussian) \gg Error_{Efficient-algorithms}(Gaussian)}$

Let ${\mathbb Q}$ be a sub-Gaussian distribution over ${\mathbb R}^d$ with covariance Σ	
Input:	outlier-corrupted samples from $\ensuremath{\mathbb{Q}}$
Output:	$\widehat{\Sigma}$ such that $\ \widehat{\Sigma}-\Sigma\ _{\text{op}}$ is small w.h.p.

- Information theoretic error: dimension-independent
- Algorithmically: not well-understood
 - ${\scriptstyle \vartriangleright \ \ Error_{Efficient-algorithms}(sub-Gaussian) \gg Error_{Efficient-algorithms}(Gaussian)}$
 - \triangleright Also true for (robust) regression, mean estimation, clustering, \dots

Let ${\mathbb Q}$ be a sub-Gaussian distribution over ${\mathbb R}^d$ with covariance Σ	
Input:	outlier-corrupted samples from $\ensuremath{\Omega}$
Output:	$\widehat{\Sigma}$ such that $\ \widehat{\Sigma}-\Sigma\ _{\text{op}}$ is small w.h.p.

- Information theoretic error: dimension-independent
- Algorithmically: not well-understood

 - ▷ Also true for (robust) regression, mean estimation, clustering, ...

What are the underlying algorithmic challenges?

Algorithmic template: robust mean estimation

- **1.** While there exists a direction v with large variance:
 - **1.1** Filter a point x if $\langle v, x \rangle$ is too large
- 2. return sample mean

Algorithmic template: robust covariance estimation

- 1. While there exists a direction ν with large t-th moment (for $t \geqslant$ 4):
 - **1.1** Filter a point x if $\langle v, x \rangle^2$ is too large
- 2. return sample covariance

Algorithmic template: robust covariance estimation

- 1. While there exists a direction ν with large t-th moment $_{\text{(for }t \ \geqslant \ 4)}$:
 - **1.1** Filter a point x if $\langle v, x \rangle^2$ is too large
- 2. return sample covariance

Need to find a direction $\widehat{\nu} \approx \operatorname*{argmax}_{\nu \in \mathbb{S}^{d-1}} \mathbb{E}_X[\langle \nu, X \rangle^t]_{\text{(for } t \ge 4)}$

Algorithmic template: robust covariance estimation

- **1.** While there exists a direction v with large **t-th moment** (for $t \ge 4$):
 - **1.1** Filter a point x if $\langle v, x \rangle^2$ is too large
- 2. return sample covariance

Need to find a direction $\widehat{\nu} \approx \underset{\nu \in \mathbb{S}^{d-1}}{\operatorname{argmax}} \mathbb{E}_{X}[\langle \nu, X \rangle^{t}]_{\text{(for } t \ge 4)}$

Unfortunately, intractable (in the worst-case over X)

Algorithmic template: robust covariance estimation

- While there exists a direction v with large t-th moment (for t ≥ 4):
 1.1 Filter a point x if (v, x)² is too large
 - **1.1** Fitter a point $x \in \langle v, x \rangle$ is too
- 2. return sample covariance

• Need to find a direction $\widehat{\nu} \approx \underset{\nu \in \mathbb{S}^{d-1}}{\operatorname{argmax}} \mathbb{E}_{X}[\langle \nu, X \rangle^{t}]_{\text{(for } t \ge 4)}$

- Unfortunately, intractable (in the worst-case over X)
- Further structure?

Algorithmic template: robust covariance estimation

- **1.** While there exists a direction v with large **t-th moment** (for $t \ge 4$):
 - **1.1** Filter a point x if $\langle v, x \rangle^2$ is too large
- 2. return sample covariance

Need to find a direction $\widehat{\nu} \approx \underset{\nu \in \mathbb{S}^{d-1}}{\operatorname{argmax}} \mathbb{E}_{X}[\langle \nu, X \rangle^{t}]_{\text{(for } t \ge 4)}$

- Unfortunately, intractable (in the worst-case over X)
- Further structure?

Do sub-Gaussian data (X) have algorithm-friendly structure?

Challenge: Checking the moments efficiently

▶ The t-th moment bound of the distribution X is

Challenge: Checking the moments efficiently

▶ The t-th moment bound of the distribution X is

 $\max_{\nu} \frac{\mathbb{E}_{X}\left[\langle \nu, X \rangle^{t} \right]}{\|\nu\|^{t}}$

Challenge: Checking the moments efficiently

▶ The t-th moment bound of the distribution X is

 $\,\vartriangleright\,$ Subgaussianity $\,\Longleftrightarrow\,$ bounded appropriately for all even t

Challenge: Checking the moments efficiently

▶ The t-th moment bound of the distribution X is

 $\,\vartriangleright\,$ Subgaussianity $\,\Longleftrightarrow\,$ bounded appropriately for all even t

A central object in many applications

Challenge: Checking the moments efficiently

The t-th moment bound of the distribution X is

 $\,\vartriangleright\,$ Subgaussianity $\,\Longleftrightarrow\,$ bounded appropriately for all even t

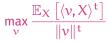
A central object in many applications

 $\,\triangleright\,\,$ Injective tensor norm of the $t\text{-tensor}\,\mathbb{E}_X[X^{\otimes t}]$

Challenge: Checking the moments efficiently

8/24

The t-th moment bound of the distribution X is



 $\,\vartriangleright\,$ Subgaussianity $\,\Longleftrightarrow\,$ bounded appropriately for all even t

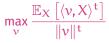
A central object in many applications

- $\,\triangleright\,$ Injective tensor norm of the t-tensor $\mathbb{E}_X[X^{\otimes t}]$
- $\triangleright~$ The 2-to-t norm of the $n \times d$ matrix ${\boldsymbol{A}}$,

 \blacktriangleright where ${\bf A}$ has rows a_1,\ldots,a_n and X is uniform on (a_1,\ldots,a_n)

Challenge: Checking the moments efficiently

The t-th moment bound of the distribution X is



 $\,\vartriangleright\,$ Subgaussianity $\,\Longleftrightarrow\,$ bounded appropriately for all even t

A central object in many applications

- $\,\triangleright\,$ Injective tensor norm of the t-tensor $\mathbb{E}_X[X^{\otimes t}]$
- $\triangleright~$ The 2-to-t norm of the $n \times d$ matrix ${\boldsymbol{A}}$,

• where A has rows a_1, \ldots, a_n and X is uniform on (a_1, \ldots, a_n)

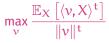
• Challenge. No efficient algorithm for constant approximation (for $t \ge 4$)

- Under Exponential Time Hypothesis [BBHKSZ12]
- ▷ Stronger hardness under Small Set Expansion Hypothesis [BBHKSZ12; HL19]

[BBHKSZ12] B. Barak, F. G.S.L. Brandao, A. W. Harrow, J. Kelner, D. Steurer, Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. [HL19] S. B. Hopkins. I. Li. How Hard Is Robust Mean Estimation? COLT. 2019

Challenge: Checking the moments efficiently

The t-th moment bound of the distribution X is



Dash Subgaussianity \iff bounded appropriately for all even t

A central object in many applications

- $\,\triangleright\,$ Injective tensor norm of the t-tensor $\mathbb{E}_X[X^{\otimes t}]$
- $\triangleright~$ The 2-to-t norm of the $n \times d$ matrix ${\boldsymbol{A}}$,

• where A has rows a_1, \ldots, a_n and X is uniform on (a_1, \ldots, a_n)

• Challenge. No efficient algorithm for constant approximation (for $t \ge 4$)

- Under Exponential Time Hypothesis [BBHKSZ12]
- ▷ Stronger hardness under Small Set Expansion Hypothesis [BBHKSZ12; HL19]

Algorithmically-tractable version of subgaussianity?

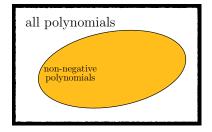
[BBHKSZ12] B. Barak, F. G.S.L. Brandao, A. W. Harrow, J. Kelner, D. Steurer, Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. [HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle \nu, X \rangle^t]$ (for $t \ge 4$) is bounded

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle v, X \rangle^t]$ (for $t \ge 4$) is bounded

Given an arbitrary degree-t (for $t \ge 4$) polynomial $h(\cdot)$ on \mathbb{R}^d ,

▶ It is **hard** to check if it is always \ge 0



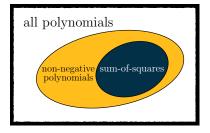
Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle v, X \rangle^t]$ (for $t \ge 4$) is bounded

Given an arbitrary degree-t (for $t \ge 4$) polynomial $h(\cdot)$ on \mathbb{R}^d ,

▶ It is **hard** to check if it is always \ge 0

9/24

 \blacktriangleright But easy to check if $h(\nu)=\sum_{i}q_{i}^{2}(\nu),$ i.e., sum-of-squares, & thus \geqslant o



Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle v, X \rangle^t]$ (for $t \ge 4$) is bounded

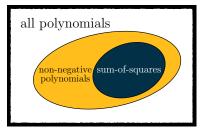
Given an arbitrary degree-t $_{\text{(for t}\,\geqslant\,4)}$ polynomial $h(\cdot)$ on \mathbb{R}^d ,

▶ It is **hard** to check if it is always \ge 0

9/24

▶ But easy to check if $h(v) = \sum_i q_i^2(v)$, i.e., sum-of-squares, & thus ≥ o

🗸 a semidefinite program



sub-Gaussian: moments less than Gaussians

Algorithm-friendly subsets of sub-Gaussians

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle \nu, X \rangle^t]$ (for $t \ge 4$) is bounded

Definition. (Algorithm-friendly sub-Gaussians) X is **certifiably-sub-Gaussian** if

not only are the moments bounded

$$\mathbb{E}_{G \sim \mathcal{N}(o, I)}\left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X\left[\langle \nu, X \rangle^t \right] \hspace{0.2cm} \geqslant o$$

sub-Gaussian: moments less than Gaussians

Algorithm-friendly subsets of sub-Gaussians

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle \nu,X\rangle^t]$ (for $t\geqslant 4$) is bounded

Definition. (Algorithm-friendly sub-Gaussians) X is certifiably-sub-Gaussian if the moments are bounded in a sum-of-squares way: for all even t, $\mathbb{E}_{G \sim \mathcal{N}(o,\mathbf{I})} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X \rangle^t \right] = \sum_i q_i^2(\nu)$ for some polynomials $q_1(\cdot), \ldots$, but also a SoS polynomials

sub-Gaussian: moments less than Gaussians

Algorithm-friendly subsets of sub-Gaussians

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle \nu,X\rangle^t]$ (for $t\geqslant 4$) is bounded

Definition. (Algorithm-friendly sub-Gaussians) X is certifiably-sub-Gaussian if the moments are bounded in a sum-of-squares way: for all even t, $\mathbb{E}_{G\sim\mathcal{N}(\mathsf{o},\mathbf{I})}\left[\langle \nu,G\rangle^{t}\right] - \mathbb{E}_{X}\left[\langle \nu,X\rangle^{t}\right] = \sum_{\mathfrak{i}}q_{\mathfrak{i}}^{2}(\nu)$ for some polynomials $q_{\mathfrak{i}}(\cdot),...,$

Proposed in [KSS18; HL18] and hugely influential since then

[KSS18] P. K. Kothari, J. Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018 [HL18] S. B. Hopkins, J. Li. Mixture Models, Robustness, and Sum of Squares Proofs. STOC. 2018

sub-Gaussian: moments less than Gaussians

Algorithm-friendly subsets of sub-Gaussians

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle \nu,X\rangle^t]$ (for t $_{\geqslant 4}$) is bounded

Definition. (Algorithm-friendly sub-Gaussians) X is certifiably-sub-Gaussian if the moments are bounded in a sum-of-squares way: for all even t, $\mathbb{E}_{G \sim \mathcal{N}(o,I)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X \rangle^t \right] = \sum_i q_i^2(\nu)$ for some polynomials $q_1(\cdot), \ldots$,

Proposed in [KSS18; HL18] and hugely influential since then

For this class of distributions, we get polynomial-time algorithms!

[KSS18] P. K. Kothari, J. Steinhardt, D. Steurer. Robust Moment Estimation and Improved Clustering via Sum of Squares. STOC. 2018 [HL18] S. B. Hopkins, J. Li. Mixture Models, Robustness, and Sum of Squares Proofs. STOC. 2018

sub-Gaussian: moments less than Gaussians

Algorithm-friendly subsets of sub-Gaussians

Challenge: checking if the moment polynomial $\mathbb{E}_X[\langle \nu,X\rangle^t]$ (for $t\geqslant 4$) is bounded

Definition. (Algorithm-friendly sub-Gaussians) X is **certifiably-sub-Gaussian** if the moments are bounded in a sum-of-squares way: for all even t, $\mathbb{E}_{G \sim \mathcal{N}(o,I)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X \rangle^t \right] = \sum_i q_i^2(\nu)$ for some polynomials $q_1(\cdot), \ldots$,

Proposed in [KSS18; HL18] and hugely influential since then

For this class of distributions, we get polynomial-time algorithms!

Which distributions are certifiably sub-Gaussian anyway?

Outline

Motivation

Prior Work

- Our Result
- Proof Sketch
- Conclusion

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

```
11/24
```

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

- \triangleright rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- \triangleright and simple transformations thereof (simple within SoS)

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- \triangleright and simple transformations thereof (simple within SoS)
- Many sub-Gaussians do not satisfy these sufficient conditions

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- \triangleright and simple transformations thereof (simple within SoS)
- Many sub-Gaussians do not satisfy these sufficient conditions
 - $\,\triangleright\,\,$ Existing proofs crucially need $\mbox{Var}(\mathbf{x}^\top J\mathbf{x}) \lesssim \|J\|_{\mbox{\rm Fr}}^2$

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- \triangleright and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

 $\triangleright~$ Existing proofs crucially need $\text{Var}(\mathbf{x}^{\top} J \mathbf{x}) \lesssim \|J\|_{\text{Fr}}^2$

(SoS in variable J)

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- ▷ and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

 $\,\triangleright\,\,$ Existing proofs crucially need $\mbox{Var}(\mathbf{x}^\top J\mathbf{x}) \lesssim \|J\|_{\mbox{\rm Fr}}^2$

(SoS in variable J)

 \triangleright Which is not true for many subgaussians

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- ▷ and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

- arepsilon Existing proofs crucially need Var $(\chi^{ op}J\chi)\lesssim \|J\|_{
 m Fr}^2$ (Set
- ▷ Which is not true for many subgaussians

In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- \triangleright and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

Dash Existing proofs crucially need Var $(x^ op Jx)\lesssim \|J\|_{ extsf{Fr}}^2$

(SoS in variable J)

▷ Which is not true for many subgaussians

In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

 $\, \triangleright \ \ \, \text{There exists } X \text{ with bounded moments} \\$

 $\mathbb{E}_X\left[\langle\nu,X\rangle^{100}\right]\leqslant O\left(1\right)\|\nu\|_2^{100}$ for all ν

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- \triangleright and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

Dash Existing proofs crucially need Var $({f x}^{ op} {f J} {f x}) \lesssim \|{f J}\|_{
m Fr}^2$

(SoS in variable **J**)

▷ Which is not true for many subgaussians

In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

- $\triangleright \quad \text{There exists X with bounded moments} \qquad \qquad \mathbb{E}_X[\langle \nu, X \rangle^{100}] \leqslant O(1) \|\nu\|_2^{100} \text{ for all } \nu$
- $\ \ \, \text{but X does NOT$ have certifiably bounded moments} \quad C\|\nu\|_2^4 \mathbb{E}_X[\langle\nu,X\rangle^4] \text{ is not sum-of-squares} \\ \ \ \, \text{squares} \ \, \text{but X does NOT$ have certifiably bounded moments} \quad C\|\nu\|_2^4 \mathbb{E}_X[\langle\nu,X\rangle^4] \text{ is not sum-of-squares} \\ \ \ \, \text{squares} \ \, \text{squ$

for any constant C

[HL19] S. B. Hopkins, J. Li. How Hard Is Robust Mean Estimation? COLT. 2019

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- $\,\triangleright\,\,$ and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

Dash Existing proofs crucially need $ext{Var}(\mathbf{x}^ op \mathbf{J}\mathbf{x})\lesssim \|\mathbf{J}\|_{ ext{Fr}}^2$

(SoS in variable **J**)

▷ Which is not true for many subgaussians

In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

- \triangleright There exists X with bounded moments
- Dash but X does NOT have certifiably bounded moments

Led to the belief that certifiable sub-Gaussianity is also strictly stronger than sub-Gaussianity

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- $\,\triangleright\,\,$ and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

Dash Existing proofs crucially need Var $(\mathbf{x}^{ op} \mathbf{J} \mathbf{x}) \lesssim \|\mathbf{J}\|_{\mathsf{Fr}}^2$

(SoS in variable **J**)

▷ Which is not true for many subgaussians

In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

- \triangleright There exists X with bounded moments
- \triangleright but X does NOT have certifiably bounded moments

Led to the belief that certifiable sub-Gaussianity is also strictly stronger than sub-Gaussianity

certifiable sub-Gaussian

Gaussians

Prior work: Certifiable sub-Gaussianity vs. sub-Gaussianity

Sufficient conditions for certifiability are rather strong

- ▷ rotational invariance, independent coordinates
- ▷ log-Sobolev distributions (more generally, Poincare) [KSS18]
- $\,\triangleright\,\,$ and simple transformations thereof (simple within SoS)

Many sub-Gaussians do not satisfy these sufficient conditions

Dash Existing proofs crucially need $ext{Var}(\mathbf{x}^ op \mathbf{J}\mathbf{x})\lesssim \|\mathbf{J}\|_{ ext{Fr}}^2$

(SoS in variable **J**)

▷ Which is not true for many subgaussians

In general, certifiability of (constantly-many) moments is strictly stronger*[HL19]

- \triangleright There exists X with bounded moments
- \triangleright but X does NOT have certifiably bounded moments

 Led to the belief that certifiable sub-Gaussianity is also strictly stronger than sub-Gaussianity

^{sub-Gaussian} Can we characterize the class of

certifiably sub-Gaussians?

certifiable sub-Gaussian Gaussians

Outline

Motivation

Prior Work

Our Result

- Proof Sketch
- Conclusion

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

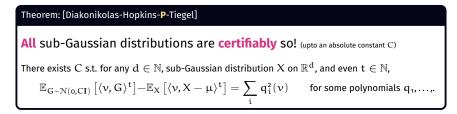
All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

[DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

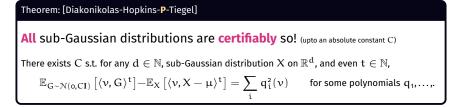
All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any $d \in \mathbb{N}$, sub-Gaussian distribution X on \mathbb{R}^d , and even $t \in \mathbb{N}$,



Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019)
 & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

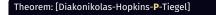
[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025



 Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019) & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

ho~ Even for the fourth moment (t = 4), the prior best bound was \sqrt{d}

[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025



All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any $d \in \mathbb{N}$, sub-Gaussian distribution X on \mathbb{R}^d , and even $t \in \mathbb{N}$,

 $\mathbb{E}_{G \sim \mathcal{N}(o, CI)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X - \mu \rangle^t \right] = \sum_i q_i^2(\nu) \qquad \text{for some polynomials } q_1, \dots, q_i \in \mathbb{R}$

Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019)
 & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

ho~ Even for the fourth moment (t = 4), the prior best bound was \sqrt{d}

We show sub-Gaussians also have other algorithm-friendly structures

[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any $d \in \mathbb{N}$, sub-Gaussian distribution X on \mathbb{R}^d , and even $t \in \mathbb{N}$,

 $\mathbb{E}_{G \sim \mathcal{N}(o, CI)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X - \mu \rangle^t \right] = \sum_i q_i^2(\nu) \qquad \text{for some polynomials } q_1, \dots, q_i \in \mathbb{R}$

Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019)
 & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

 $\,\triangleright\,\,$ Even for the fourth moment (t = 4), the prior best bound was \sqrt{d}

- ▶ We show sub-Gaussians also have other algorithm-friendly structures
- **Conceptual contribution:** connecting SDP relaxations & empirical processes

[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any $d \in \mathbb{N}$, sub-Gaussian distribution X on \mathbb{R}^d , and even $t \in \mathbb{N}$,

 $\mathbb{E}_{G \sim \mathcal{N}(\mathsf{o}, CI)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X - \mu \rangle^t \right] = \sum_i q_i^2(\nu) \qquad \text{for some polynomials } q_1, \dots, q_i \in \mathbb{C}$

 Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019) & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

 $\,\triangleright\,\,$ Even for the fourth moment (t = 4), the prior best bound was \sqrt{d}

- ▶ We show sub-Gaussians also have other algorithm-friendly structures
- **Conceptual contribution:** connecting SDP relaxations & empirical processes
- Corollary: **new polynomial-time algorithms** for sub-Gaussian data

[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any $d \in \mathbb{N}$, sub-Gaussian distribution X on \mathbb{R}^d , and even $t \in \mathbb{N}$,

 $\mathbb{E}_{G \sim \mathcal{N}(\mathsf{o}, CI)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X - \mu \rangle^t \right] = \sum_i q_i^2(\nu) \qquad \text{for some polynomials } q_1, \dots, q_i \in \mathbb{C}$

 Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019) & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

 $\triangleright\;$ Even for the fourth moment (t = 4), the prior best bound was \sqrt{d}

- ▶ We show sub-Gaussians also have other algorithm-friendly structures
- **Conceptual contribution:** connecting SDP relaxations & empirical processes
- Corollary: new polynomial-time algorithms for sub-Gaussian data
- Corollary: new computational lower bounds for Gaussian data (certification)

[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025

New algorithmic guarantees for sub-Gaussian data

- We give the first polynomial-time algorithms for
 - v robust covariance estimation
 - ▷ robust linear regression

14/24

▷ robust covariance-aware mean estimation

We give the first polynomial-time algorithms for

- v robust covariance estimation
- ▷ robust linear regression

14/24

▷ robust covariance-aware mean estimation

In contrast, prior algorithmic guarantees were vacuous

We give the first polynomial-time algorithms for

- ▷ robust covariance estimation
- robust linear regression

14/24

▷ robust covariance-aware mean estimation

In contrast, prior algorithmic guarantees were vacuous

We also vastly improve the error of polynomial-time algorithms for

- robust mean estimation
- > clustering and mixture models

We give the first polynomial-time algorithms for

- ▷ robust covariance estimation
- robust linear regression

14/24

▷ robust covariance-aware mean estimation

In contrast, prior algorithmic guarantees were vacuous

We also vastly improve the error of polynomial-time algorithms for

- robust mean estimation
- > clustering and mixture models

In contrast, prior algorithmic guarantees were worse (sub-Gaussian vs. second moment)

We give the first polynomial-time algorithms for

- ▷ robust covariance estimation
- robust linear regression

14/24

▷ robust covariance-aware mean estimation

In contrast, prior algorithmic guarantees were vacuous

▶ We also vastly improve the error of polynomial-time algorithms for

- ▷ robust mean estimation
- > clustering and mixture models

In contrast, prior algorithmic guarantees were worse (sub-Gaussian vs. second moment)

 Our algorithmic guarantees are qualitatively-optimal* (within low-degree polynomial tests, statistical query algorithms, sum-of-squares hierarchy)

Robust Estimation Task	Inlier Distribution	Information- theoretic Error	Previous Best Guarantee in Polynomial Time	New Guarantees
Covariance estimation: Relative spectral norm	hypercontractive sub-Gaussian	$\widetilde{\Theta}(\varepsilon)$	No general algorithm	$\varepsilon^{1-2/\mathfrak{m}}$
Mean estimation: Mahalanobis norm	hypercontractive sub-Gaussian	$\widetilde{\Theta}(\varepsilon)$	No general algorithm	$\epsilon^{1-1/m}$
Linear regression: Arbitrary noise	hypercontractive sub-Gaussian	$\widetilde{\Theta}(\varepsilon)$	No general algorithm	$\epsilon^{1-\frac{2}{m}}$
Mean estimation: Euclidean norm	sub-Gaussian	$\widetilde{\Theta}(\varepsilon)$	$\sqrt{\epsilon}$	$\varepsilon^{1-1/m}$
List-decodable mean estimation	sub-Gaussian	$\widetilde{\Theta}(\varepsilon)$	$\sqrt{\frac{1}{1-\epsilon}}$	$\left(\tfrac{1}{1-\varepsilon}\right)^{-\Omega(\frac{1}{\mathfrak{m}})}$
Mixture models: Mixture of k Δ -separated components	Each component is sub-Gaussian	$\Delta\gtrsim \sqrt{\log k}$	$\Delta\gtrsim k^{\Omega(1)}$	$\Delta\gtrsim k^{O\left(\frac{1}{\mathfrak{m}}\right)}$

Outline

- Motivation
- Prior Work
- Our Result
- Proof Sketch
- Conclusion

Proof sketch

A series of equivalences using

- 1. duality
- 2. empirical processes
- 3. linearization

Proof sketch: (1/3) Duality

Original formulation

Certifiable formulation

$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Proof sketch: (1/3) Duality

Original formulation

X is sub-Gaussian

Certifiable formulation

$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Proof sketch: (1/3) Duality

Original formulation

X is sub-Gaussian $\begin{array}{c} \downarrow \\ \forall \nu: \ q(\nu) \leqslant B \|\nu\|^t \\ \downarrow \\ q(\nu) := \mathbb{E}_{X}[\langle \nu, X \rangle^t] \end{array}$
$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Proof sketch: (1/3) Duality

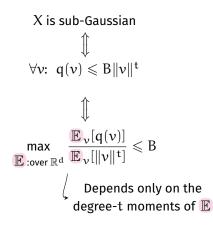
Original formulation

 $\begin{array}{c} X \text{ is sub-Gaussian} \\ & & \\ & & \\ & & \\ \forall \nu: \ q(\nu) \leqslant B \|\nu\|^t \\ & & \\$

$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Proof sketch: (1/3) Duality

Original formulation



$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Proof sketch: (1/3) Duality

Original formulation

 $\begin{array}{c} X \text{ is sub-Gaussian} \\ & & \\ & \downarrow \\ \forall \nu: \ q(\nu) \leqslant B \|\nu\|^t \\ & & \\$

Set of degree-tmoments over \mathbb{R}^p
$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Proof sketch: (1/3) Duality

Original formulation

> Set of degree-tmoments over \mathbb{R}^{p}

 $\begin{aligned} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{aligned}$

Certifiable formulation

X is certifiably sub-Gaussian

Proof sketch: (1/3) Duality

Original formulation

 $\begin{array}{c} X \text{ is sub-Gaussian} \\ & & \\ & & \\ \forall \nu: \ q(\nu) \leqslant B \|\nu\|^t \\ & & \\$

Set of degree-tmoments over \mathbb{R}^p
$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Certifiable formulation

Proof sketch: (1/3) Duality

Original formulation

 $\begin{array}{c} X \text{ is sub-Gaussian} \\ & & \\ & & \\ \forall \nu: \ q(\nu) \leqslant B \|\nu\|^t \\ & & \\$

Set of degree-tmoments over \mathbb{R}^{I}
$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Certifiable formulation

X is certifiably sub-Gaussian $q(v) \leq_{sos} B ||v||^t$ $\mathbb{E}_{v}[q(v)]$ ≤ B max $\widetilde{\mathbb{E}}_{v}[\|v\|^{t}]$ $\widetilde{\mathbb{E}}$:degree-t A "pseudo"-expectation

Proof sketch: (1/3) Duality

Original formulation

 $\begin{array}{c} X \text{ is sub-Gaussian} \\ & \updownarrow \\ \forall \nu: \ q(\nu) \leqslant B \|\nu\|^t \\ & & \updownarrow \\ & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\$

$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$

Certifiable formulation

X is certifiably sub-Gaussian $q(v) \leq_{sos} B ||v||^t$ $\frac{\widetilde{\mathbb{E}}_{\nu}[q(\nu)]}{\mathbb{E}} \leqslant \mathsf{B}$ max $\widetilde{\mathbb{E}}_{v}[\|v\|^{t}]$ $\widetilde{\mathbb{E}}$:degree-t A "pseudo"-expectation

Set of degree-tmoments over \mathbb{R}^p

Proof sketch: (1/3) Duality

Original formulation

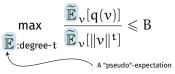
X is sub-Gaussian $\forall v: q(v) \leq B \|v\|^t$ $\underset{\mathbb{E}:\mathsf{over}\,\mathbb{R}^d}{\text{max}} \frac{\mathbb{E}_{\nu}[q(\nu)]}{\mathbb{E}_{\nu}[\|\nu\|^t]} \leqslant B$ $q(v) := \mathbb{E}[\langle v, X \rangle^t]$ $B := (\Theta(\sqrt{t}))^t$

Certifiable formulation

X is certifiably sub-Gaussian $q(v) \leq_{sos} B ||v||^t$ $\frac{\mathbb{E}_{\nu}[q(\nu)]}{\widetilde{\mathbb{E}}_{\nu}[\|\nu\|^{t}]} \leqslant B$ max $\widetilde{\mathbb{E}}$:degree-t "pseudo"-expectation Set of degree- $t \mathbb{E}$

Proof sketch: (1/3) Duality

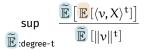
$$\begin{split} q(\nu) &:= \mathbb{E}[\langle \nu, X \rangle^t] \\ B &:= (\Theta(\sqrt{t}))^t \end{split}$$



Equivalent to showing that the dual is bounded

certifiabile sub-Gaussianity \iff dual is bounded

Proof sketch: (2/3) Empirical process



certifiabile sub-Gaussianity \iff dual is bounded

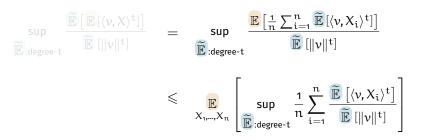
Proof sketch: (2/3) Empirical process

certifiabile sub-Gaussianity \iff dual is bounded

Proof sketch: (2/3) Empirical process

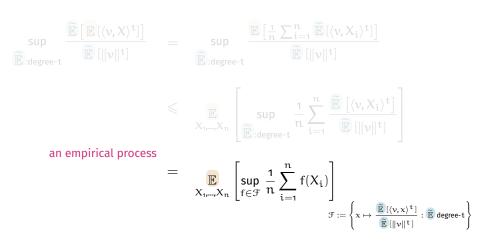
certifiabile sub-Gaussianity \iff dual is bounded

Proof sketch: (2/3) Empirical process



certifiabile sub-Gaussianity \iff dual is bounded

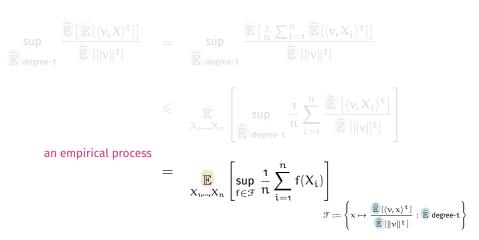
Proof sketch: (2/3) Empirical process



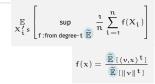
certifiabile sub-Gaussianity \iff dual is bounded

Proof sketch: (2/3) Empirical process

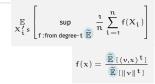
 $\widetilde{\mathbb{E}}$: a "pseudo"-expectation



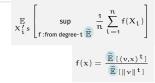
Is this empirical process bounded for **all** sub-Gaussians?



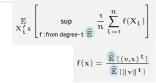
- ▶ Foundational result in probability: Talagrands's generic chaining
 - $\triangleright~$ all sub-Gaussian linear process \leqslant Gaussian linear process



- ▶ Foundational result in probability: Talagrands's generic chaining
 - ho~ all sub-Gaussian linear process \leqslant Gaussian linear process
 - ▷ but our process is non-linear

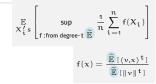


- ▶ Foundational result in probability: Talagrands's generic chaining
 - ho~ all sub-Gaussian linear process \leqslant Gaussian linear process
 - ▷ but our process is non-linear. Can we still use it?



- Foundational result in probability: Talagrands's generic chaining
 - ho~ all sub-Gaussian linear process \leqslant Gaussian linear process
 - ▷ but our process is non-linear. Can we still use it?
- Beyond linear processes, chaining also applies if f is "linear-ish"
 - $\triangleright \ \ \mathsf{sup}_{g \in \mathfrak{G}} \langle g, x \rangle \text{ or } \left(\mathsf{sup}_{g \in \mathfrak{G}} \langle g, x \rangle\right)^t$

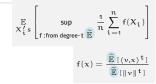
20/24



- Foundational result in probability: Talagrands's generic chaining
 - ho~ all sub-Gaussian linear process \leqslant Gaussian linear process
 - ▷ but our process is non-linear. Can we still use it?
- ▶ Beyond linear processes, chaining also applies if f is "linear-ish"
 ▷ sup_{a∈G}⟨g, x⟩ or (sup_{a∈G}⟨g, x⟩)^t

Lemma. $\sum_{i} f(x_i)$ is "linear-ish" and generic chaining is applicable

20/24



- Foundational result in probability: Talagrands's generic chaining
 - ho~ all sub-Gaussian linear process \leqslant Gaussian linear process
 - ▷ but our process is non-linear. Can we still use it?
- ► Beyond linear processes, chaining also applies if f is "linear-ish" $\triangleright \sup_{a \in G} \langle g, x \rangle$ or $(\sup_{a \in G} \langle g, x \rangle)^{t}$

Lemma. $\sum_{i} f(x_i)$ is "linear-ish" and generic chaining is applicable

For all sub-Gaussians, our process is bounded by Gaussians!

X is sub-Gaussian

Proof sketch: Putting the pieces together

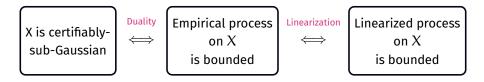
X is certifiablysub-Gaussian

X is sub-Gaussian

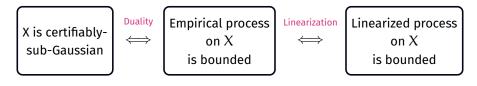
Proof sketch: Putting the pieces together



Proof sketch: Putting the pieces together

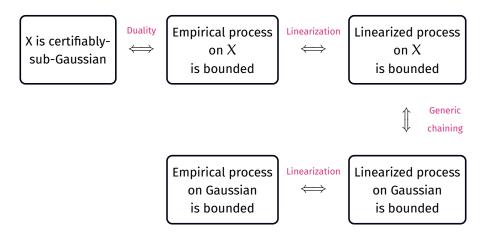


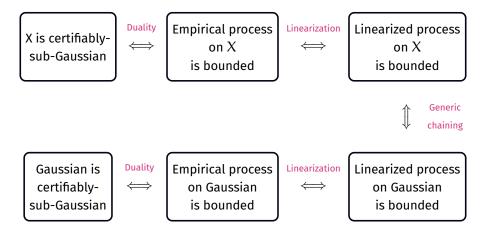
Proof sketch: Putting the pieces together

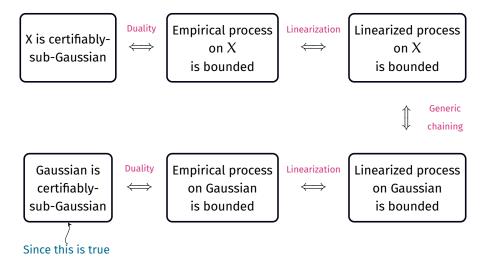


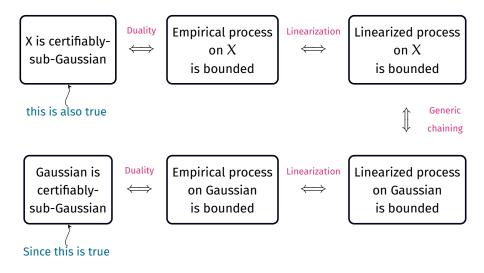
Generic chaining

Linearized process on Gaussian is bounded









Our result: Certifiability of sub-Gaussian distributions

Theorem: [Diakonikolas-Hopkins-P-Tiegel]

All sub-Gaussian distributions are certifiably so! (upto an absolute constant C)

There exists C s.t. for any $d \in \mathbb{N}$, sub-Gaussian distribution X on \mathbb{R}^d , and even $t \in \mathbb{N}$,

 $\mathbb{E}_{G \sim \mathcal{N}(\mathsf{o}, CI)} \left[\langle \nu, G \rangle^t \right] - \mathbb{E}_X \left[\langle \nu, X - \mu \rangle^t \right] = \sum_i q_i^2(\nu) \qquad \text{for some polynomials } q_1, \dots, q_i \in \mathbb{C}$

 Answers open questions of Kothari-Steinhardt (2018), Hopkins (2019) & extends Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

ho~ Even for the fourth moment (t = 4), the prior best bound was \sqrt{d}

- ▶ We show sub-Gaussians also have other algorithm-friendly structures
- **Conceptual contribution:** connecting SDP relaxations & empirical processes
- ▶ Corollary: new polynomial-time algorithms for sub-Gaussian data
- Corollary: new computational lower bounds for Gaussian data (certification)

[[]DHPT25] I. Diakonikolas, S. Hopkins, A. Pensia, S. Tigel. SoS Certifiability of Subgaussian Distributions & Its Algorithmic Applications. STOC. 2025

Outline

Motivation

.

- Prior Work
- Our Result
- Proof Sketch

Conclusion

Established that all subgaussian distributions are certifiably so

.

Established that all subgaussian distributions are certifiably so

.

As a corollary, we get a host of new algorithmic guarantees

Established that all subgaussian distributions are certifiably so

.

As a corollary, we get a host of new algorithmic guarantees

- Established that all subgaussian distributions are certifiably so
- As a corollary, we get a host of new algorithmic guarantees

- ▶ Going beyond subgaussianity for certifiably bounded moments.
 - > Subexponential distributions?

- Established that all subgaussian distributions are certifiably so
- As a corollary, we get a host of new algorithmic guarantees

- ► Going beyond subgaussianity for certifiably bounded moments.
 - Subexponential distributions?
- ► What is the **largest** class of distributions *P* and **smallest** B that leads to (quasi)-polynomial algorithm for deciding/refuting between:

Established that all subgaussian distributions are certifiably so

▶ As a corollary, we get a host of new algorithmic guarantees

- Going beyond subgaussianity for certifiably bounded moments.
 > Subexponential distributions?
- ▶ What is the **largest** class of distributions 𝒫 and **smallest** B that leads to (quasi)-polynomial algorithm for deciding/refuting between:

$$\begin{array}{ll} \text{Let }B \gg \texttt{1} \text{ and } \mathcal{P} \subset \Big\{ \mathsf{P}: \sup_{\nu \in \mathbb{S}^{d-1}} \mathbb{E}_{X \sim \mathsf{P}}[\langle \nu, X \rangle^4] \leqslant \texttt{1} \Big\}.\\\\ \text{Null:} & X_1, \dots, X_n \text{ are iid from } \mathsf{P} \in \mathfrak{P}\\\\ \text{Alternate:} & X_1, \dots, X_n \text{ are iid from } Q \text{ with } \sup_{\nu \in \mathbb{S}^{d-1}} \mathbb{E}_{X \sim Q}[\langle \nu, X \rangle^4] \geqslant \mathsf{B} \end{array}$$

Established that all subgaussian distributions are certifiably so

▶ As a corollary, we get a host of new algorithmic guarantees

Open problems:

- Going beyond subgaussianity for certifiably bounded moments.
 > Subexponential distributions?
- ▶ What is the **largest** class of distributions 𝒫 and **smallest** B that leads to (quasi)-polynomial algorithm for deciding/refuting between:

$$\begin{array}{lll} \text{Let }B \gg \texttt{1} \text{ and } \mathcal{P} \subset \Big\{ \mathsf{P}: \sup_{\nu \in \mathbb{S}^{d-1}} \mathbb{E}_{X \sim \mathsf{P}}[\langle \nu, X \rangle^4] \leqslant \texttt{1} \Big\}. \\ \text{Null:} & X_1, \ldots, X_n \text{ are iid from } \mathsf{P} \in \mathcal{P} \\ \text{Alternate:} & X_1, \ldots, X_n \text{ are iid from } Q \text{ with } \sup_{\nu \in \mathbb{S}^{d-1}} \mathbb{E}_{X \sim Q}[\langle \nu, X \rangle^4] \geqslant \mathsf{B} \end{array}$$

Thank you for your attention!

Outline

Proof of SoS Certifiability

$$\mathbb{E}_{x_{i}^{l}s}\left[\sup_{\tilde{E}:degree-t}\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\right]$$

$$\mathbb{E}\left[\sup_{\tilde{E}:degree-t}\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\right]$$

$$f(x) = \frac{\tilde{E}\left[(v,X_{i})^{t}\right]}{\tilde{E}\left[|v||^{t}\right]}$$

$$\mathbb{E}\left[\sup_{(f_{1},...,f_{n})\in\mathcal{F}_{lin}}\frac{1}{n}\sum_{i=1}^{n}f_{i}(X_{i})\right] \lesssim \mathbb{E}\left[\sup_{(f_{1},...,f_{n})\in\mathcal{F}_{lin}}\frac{1}{n}\sum_{i=1}^{n}f_{i}(G_{i})\right]$$

Our linearization lemma

Lemma. (f is linear-ish) For every $f\in \mathfrak{F}$, there exists \mathfrak{G} such that

$$\sum_{i} f(x_{i}) := \left(\sup_{(g_{1}, ..., g_{n}) \in \mathcal{G}} \sum_{i} \langle g_{i}, x_{i} \rangle \right)^{\frac{1}{2}}$$

$$\mathbb{E}_{x_{i}^{l}s}\left[\sup_{\tilde{E}:degree_{t}}\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\right]$$

$$f(x) = \frac{\tilde{E}_{i}(x_{i})^{t}}{\tilde{E}(||v||^{t})}$$

$$f(x) = \frac{\tilde{E}_{i}(x_{i})^{t}}{\tilde{E}_{i}||v||^{t}}$$

$$\mathbb{E}\left[\sup_{(f_{1},...,f_{n})\in\mathcal{F}_{lin}}\frac{1}{n}\sum_{i=1}^{n}f_{i}(X_{i})\right] \lesssim \mathbb{E}\left[\sup_{(f_{1},...,f_{n})\in\mathcal{F}_{lin}}\frac{1}{n}\sum_{i=1}^{n}f_{i}(G_{i})\right]$$

Our linearization lemma

Lemma. (f is linear-ish) For every $f\in \mathfrak{F}$, there exists \mathfrak{G} such that

$$\sum_{i} f(x_{i}) := \left(\sup_{(g_{1}, \dots, g_{n}) \in \mathcal{G}} \sum_{i} \langle g_{i}, x_{i} \rangle \right)^{T}$$

► Intuition: $\sum_{i} y_{i}^{t} = \|y\|_{t}^{t} = \sup_{z} \left\langle \frac{z}{\|z\|_{q}}, y \right\rangle^{t}$ by Holder's inequality

$$\mathbb{E}_{x_{i}^{l}s}\left[\sup_{\tilde{\mathbb{E}}:degree-t}\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\right]$$

$$\mathbb{E}\left[\sup_{\tilde{\mathbb{E}}:degree-t}\frac{1}{n}\sum_{i=1}^{n}f(X_{i})\right]$$

$$f(x) = \frac{\tilde{\mathbb{E}}\left[(v,X_{i})^{t}\right]}{\tilde{\mathbb{E}}\left[\|v\|^{t}\right]}$$

$$\mathbb{E}\left[\sup_{(f_{1},...,f_{n})\in\mathcal{F}_{lin}}\frac{1}{n}\sum_{i=1}^{n}f_{i}(X_{i})\right] \lesssim \mathbb{E}\left[\sup_{(f_{1},...,f_{n})\in\mathcal{F}_{lin}}\frac{1}{n}\sum_{i=1}^{n}f_{i}(G_{i})\right]$$

Our linearization lemma

Lemma. (f is linear-ish) For every $f\in \mathfrak{F}$, there exists \mathfrak{G} such that

$$\sum_{i} f(x_{i}) := \left(\sup_{(g_{1}, \dots, g_{n}) \in \mathcal{G}} \sum_{i} \langle g_{i}, x_{i} \rangle \right)^{\frac{1}{2}}$$

Intuition: \$\sum_i y_i^t = ||y||_t^t = \sup_z \left(\frac{z}{||z||_q}, y \right)^t\$ by Holder's inequality
 Extends to \$\tilde{\mathbb{E}}\$: (i) \$y_i = \left(\nu, X_i \right)\$ and (ii) Holder's inequality holds for \$\tilde{\mathbb{E}}\$